Exam 16: Trigonometric Models

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the integral. (x3+x4)sec2(5x4+4x5)dx\int \left( x ^ { 3 } + x ^ { 4 } \right) \sec ^ { 2 } \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) \mathrm { d } x

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

B

Find the derivative of the function. p(x)=3+2sin(π2(x1))p ( x ) = 3 + 2 \sin \left( \frac { \pi } { 2 } ( x - 1 ) \right)

Free
(Multiple Choice)
4.8/5
(31)
Correct Answer:
Verified

A

Evaluate the integral. π3π4sinx dx\int _ { - \frac { \pi } { 3 } } ^ { \frac { \pi } { 4 } } \sin x \mathrm {~d} x

Free
(Multiple Choice)
4.9/5
(27)
Correct Answer:
Verified

D

Find the derivative of the function. u(x)=cos(x22x)u ( x ) = \cos \left( x ^ { 2 } - 2 x \right)

(Multiple Choice)
4.8/5
(35)

Calculate the derivative. ddx([lnx][cot(6x+5)])\frac { d } { d x } ( [ \ln | x | ] [ \cot ( 6 x + 5 ) ] )

(Multiple Choice)
5.0/5
(28)

Model the curve with a cosine function. ​  Model the curve with a cosine function. ​   ​ Note that the period of the curve is  P = 28  , its range is  [ 0,110 ]  and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π. ​ Note that the period of the curve is P=28P = 28 , its range is [0,110][ 0,110 ] and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.

(Essay)
4.8/5
(27)

Evaluate the integral. 10.8cos(6x1)dx\int 10.8 \cos ( 6 x - 1 ) \mathrm { d } x

(Multiple Choice)
4.8/5
(34)

Use geometry to compute the given integral. π6π62sinxdx\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x

(Multiple Choice)
4.8/5
(30)

The uninflated cost of Dugout brand snow shovels currently varies from a high of $30 on January 1 (t=0)( t = 0 ) to a low of $6 on July 1 (t=0.5)( t = 0.5 ) . Assuming this trend were to continue indefinitely, calculate the uninflated cost u(t)u ( t ) of Dugout snow shovels as a function of time t in years. (Use a sine function.)

(Multiple Choice)
4.9/5
(28)

Decide whether the integral converges. If the integral converges, compute its value. 0+e3xcos(3x)dx\int _ { 0 } ^ { + \infty } e ^ { - 3 x } \cos ( 3 x ) \mathrm { d } x

(Multiple Choice)
4.8/5
(34)

Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(t)=45cos(t5)g ( t ) = 45 - \cos ( t - 5 ) By a sine function.

(Multiple Choice)
4.9/5
(35)

The depth of water d(t)d ( t ) at my favorite surfing spot varies from 5 to 15 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model to the depth of water as a function of time t in hours since midnight in Sunday morning.

(Essay)
4.9/5
(40)

Recall that the average of a function f(x)f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x)dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x Calculate the 9-unit moving average of the function. f(x)=cos(πx18)f ( x ) = \cos \left( \frac { \pi x } { 18 } \right)

(Multiple Choice)
4.9/5
(46)

Find the derivative of the function. y(x)=7cos(ex)+9excosxy ( x ) = 7 \cos \left( e ^ { x } \right) + 9 e ^ { x } \cos x

(Multiple Choice)
4.9/5
(37)

Evaluate the integral. 6sec(3x7)dx\int 6 \sec ( 3 x - 7 ) \mathrm { d } x

(Multiple Choice)
5.0/5
(33)

Sketch the curves without any technological help. f(t)=2costf ( t ) = 2 \cos t ; g(t)=3.3cos(2t)g ( t ) = 3.3 \cos ( 2 t )

(Multiple Choice)
4.8/5
(30)

The cost of Dig-It brand snow shovels is given by c(t)=3sin(2π(t0.75))c ( t ) = 3 \sin ( 2 \pi ( t - 0.75 ) ) Where t is time in years since January 1, 1997. How fast, in dollars per year, is the cost increasing on October 30, 1997

(Multiple Choice)
4.8/5
(38)

Find the derivative of the function. w(x)=2sec(x)tan(x22)w ( x ) = 2 \sec ( x ) \cdot \tan \left( x ^ { 2 } - 2 \right)

(Multiple Choice)
4.8/5
(34)

Evaluate the integral 1π3π9sin(1x)x2 dx\int _ { \frac { 1 } { \pi } } ^ { \frac { 3 } { \pi } } 9 \frac { \sin \left( \frac { 1 } { x } \right) } { x ^ { 2 } } \mathrm {~d} x

(Multiple Choice)
4.7/5
(37)

Evaluate the integral. ​ sin(7x8)dx\int - \sin ( - 7 x - 8 ) \mathrm { d } x

(Essay)
4.9/5
(31)
Showing 1 - 20 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)