Exam 3: Linear Programming: Sensitivity Analysis and Interpretation of Solution

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the following Management Scientist output to answer the questions. MIN 4X1+5X2+6X3 S.T. 1) X1+X2+X3<85 2) 3X1+4X2+2X3>280 3) 2X1+4X2+4X3>320 Objective Function Value = 400.000 Variable Value Reduced Cost X1 0.000 1.500 X2 80.000 0.000 X3 0.000 1.000 Constraint Slack/Surplus Dual Frice 1 5.000 0.000 2 40.000 0.000 3 0.000 -1.250 OBJECTIVE COEFFICIENT RANGES Variable Lower Limit Current Value Upper Limit 1 2.500 4.000 No Upper Limit 2 0.000 5.000 6.000 3 5.000 6.000 No Upper Limit  RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES } Constraint Lower Limit Current Value Upper Limit 1 80.000 85.000 No Upper Limit 2 No Lower Limit 280.000 320.000 3 280.000 320.000 340.000 a.What is the optimal solution, and what is the value of the profit contribution? b.Which constraints are binding? c.What are the dual prices for each resource? Interpret. d.Compute and interpret the ranges of optimality. e.Compute and interpret the ranges of feasibility.

(Essay)
4.9/5
(38)

Portions of a Management Scientist output are shown below. Use what you know about the solution of linear programs to fill in the ten blanks. LINEAR PROGRAMMING PROBLEM MAX 12X1+9X2+7X3 S.T. 1) 3X1+5X2+4X3<150 2) 2X1+1X2+1X3<64 3) 1X1+2X2+1X3<80 4) 2X1+4X2+3X3>116 OPTIMAL SOLUTION Objective Function Value = 336.000 Variable Value Reduced Cost X1 - 0.000 X2 24.000 - X3 - 3.500 Constraint Slack/Surplus Dual Price 1 0.000 15.000 2 -- 0.000 3 -- 0.000 4 0.000 --  OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES } Variable Lower Limit Current Value Upper Limit 1 5.400 12.000 No Upper Limit 2 2.000 9.000 20.000 3 No Lower Limit 7.000 10.500  RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES } Constraint Lower Limit Current Value Upper Limit 1 145.000 150.000 156.667 2 - - 64.000 3 - - 80.000 4 110.286 116.000 120.000

(Essay)
4.8/5
(34)

The dual price measures, per unit increase in the right hand side,

(Multiple Choice)
4.8/5
(26)

When the cost of a resource is sunk, then the dual price can be interpreted as the

(Multiple Choice)
4.8/5
(34)

Explain the connection between reduced costs and the range of optimality, and between dual prices and the range of feasibility.

(Short Answer)
4.7/5
(41)

How can the interpretation of dual prices help provide an economic justification for new technology?

(Short Answer)
4.7/5
(47)

For a minimization problem, a positive dual price indicates the value of the objective function will increase.

(True/False)
4.9/5
(30)
Showing 41 - 47 of 47
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)