Exam 16: Regression Analysis: Model Building

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

When a regression model was developed relating sales (y) of a company to its product's price (x1), the SSE was determined to be 495. A second regression model relating sales (y) to product's price (x1) and competitor's product's price (x2) resulted in an SSE of 396. At α = .05, determine if the competitor's product's price contributed significantly to the model. The sample size for both models was 33.

Free
(Short Answer)
4.8/5
(42)
Correct Answer:
Verified

F = 7.5 > critical F = 4.17; reject H0; competitor's product's price contributed significantly to the model.

The null hypothesis in the Durbin-Watson test is always that there is

Free
(Multiple Choice)
4.7/5
(31)
Correct Answer:
Verified

D

An example of a first-order model with three predictor variables is

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

A

Thirty-four observations of a dependent variable and two independent variables resulted in an SSE of 300. When a third independent variable was added to the model, the SSE was reduced to 250. Using α = .05, determine whether or not the third independent variable contributes significantly to the model.

(Short Answer)
4.8/5
(26)

In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​ In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> ​ Also, the following standard errors and the sum of squares were obtained. S<sub>b</sub><sub>1</sub><sub> </sub>= 3 S<sub>b</sub><sub>2</sub><sub> </sub>= 6 S<sub>b</sub><sub>3</sub><sub> </sub>= 7 SST = 4900 SSE = 1296 At the .01 level of significance, the coefficient of x<sub>3</sub> = 12 - 18x1 + 4x2 + 15x3 ​ Also, the following standard errors and the sum of squares were obtained. Sb1 = 3 Sb2 = 6 Sb3 = 7 SST = 4900 SSE = 1296 At the .01 level of significance, the coefficient of x3

(Multiple Choice)
4.8/5
(37)

All the independent variables in a multiple regression analysis

(Multiple Choice)
4.8/5
(37)

When dealing with the problem of nonconstant variance, the reciprocal transformation means using

(Multiple Choice)
4.8/5
(30)

The forward selection procedure starts with _____ independent variable(s) in the multiple regression model.

(Multiple Choice)
4.8/5
(37)

In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed.   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> Also, the following standard errors and the sum of squares were obtained.   If we are interested in testing for the significance of the relationship among the variables (i.e., significance of the model), the critical value of F at α = .05 is = 12 - 18x1 + 4x2 + 15x3 Also, the following standard errors and the sum of squares were obtained. In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed.   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> Also, the following standard errors and the sum of squares were obtained.   If we are interested in testing for the significance of the relationship among the variables (i.e., significance of the model), the critical value of F at α = .05 is If we are interested in testing for the significance of the relationship among the variables (i.e., significance of the model), the critical value of F at α = .05 is

(Multiple Choice)
4.8/5
(45)

In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​ In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> ​ Also, the following standard errors and the sum of squares were obtained.   The multiple coefficient of determination is = 12 - 18x1 + 4x2 + 15x3 ​ Also, the following standard errors and the sum of squares were obtained. In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> ​ Also, the following standard errors and the sum of squares were obtained.   The multiple coefficient of determination is The multiple coefficient of determination is

(Multiple Choice)
4.8/5
(35)

In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​ In a regression analysis of a first-order model involving 3 predictor variables and 25 observations, the following estimated regression equation was developed. ​   = 12 - 18x<sub>1</sub> + 4x<sub>2</sub> + 15x<sub>3</sub> ​ Also, the following standard errors and the sum of squares were obtained. ​ S<sub>b</sub><sub>1 </sub>= 3 S<sub>b</sub><sub>2 </sub>= 6 S<sub>b</sub><sub>3 </sub>= 7 SST = 4900 SSE = 1296 ​ The p-value for testing the significance of the regression model is = 12 - 18x1 + 4x2 + 15x3 ​ Also, the following standard errors and the sum of squares were obtained. ​ Sb1 = 3 Sb2 = 6 Sb3 = 7 SST = 4900 SSE = 1296 ​ The p-value for testing the significance of the regression model is

(Multiple Choice)
4.8/5
(24)

Models in which the parameters have exponents other than 1 are called

(Multiple Choice)
4.7/5
(32)

A data set consisting of 7 observations of a dependent variable y and two independent variables x1 and x2 was used in a regression analysis. Using x1 as the only independent variable, the following function is provided. A data set consisting of 7 observations of a dependent variable y and two independent variables x<sub>1</sub> and x<sub>2</sub> was used in a regression analysis. Using x<sub>1</sub> as the only independent variable, the following function is provided.   = .408 + 1.338x<sub>1</sub> The SSE for the above model is 39.535. Using both x<sub>1</sub> and x<sub>2</sub> as independent variables yields the following function.   = .805 + .498x<sub>1</sub> - .477x<sub>2</sub> The SSE for this function is 1.015. Use an F test and determine if x<sub>2</sub> contributes significantly to the model. Let α = .10. = .408 + 1.338x1 The SSE for the above model is 39.535. Using both x1 and x2 as independent variables yields the following function. A data set consisting of 7 observations of a dependent variable y and two independent variables x<sub>1</sub> and x<sub>2</sub> was used in a regression analysis. Using x<sub>1</sub> as the only independent variable, the following function is provided.   = .408 + 1.338x<sub>1</sub> The SSE for the above model is 39.535. Using both x<sub>1</sub> and x<sub>2</sub> as independent variables yields the following function.   = .805 + .498x<sub>1</sub> - .477x<sub>2</sub> The SSE for this function is 1.015. Use an F test and determine if x<sub>2</sub> contributes significantly to the model. Let α = .10. = .805 + .498x1 - .477x2 The SSE for this function is 1.015. Use an F test and determine if x2 contributes significantly to the model. Let α = .10.

(Short Answer)
4.8/5
(28)

In multiple regression analysis, the word linear in the term "general linear model" refers to the fact that β0, β1, . . ., βp all have exponents of

(Multiple Choice)
4.9/5
(38)

The following regression model ​ Y = β0 + β1x1 + β2 The following regression model ​ Y = β<sub>0</sub> + β<sub>1</sub>x<sub>1</sub> + β<sub>2</sub> <sub> </sub>   <sub> </sub> + ε ​is known as a + ε ​is known as a

(Multiple Choice)
4.8/5
(38)

The correlation in error terms that arises when the error terms at successive points in time are related is termed

(Multiple Choice)
4.7/5
(37)

Serial correlation is

(Multiple Choice)
4.8/5
(35)

When autocorrelation is present, one of the assumptions of the regression model is violated and that assumption is?

(Multiple Choice)
4.8/5
(41)

In multiple regression analysis, the general linear model

(Multiple Choice)
4.9/5
(35)

Which of the following variable selection procedures would be considered non-heuristic

(Multiple Choice)
4.7/5
(27)
Showing 1 - 20 of 41
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)