Exam 13: Multiple Regression

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, the null hypothesis that the model is a good- fitting model cannot be rejected when allowing for a 5% probability of making a type I error.

(True/False)
4.9/5
(36)

When an additional explanatory variable is introduced into a multiple regression model, the adjusted r 2 can never decrease.

(True/False)
4.8/5
(38)

SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. Regression Statistics Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA df SS MS F Signif F Regression 2 10943.0190 5471.5095 3.2691 0.0629 Residual 17 28452.6027 1673.6825 Total 19 39395.6218 13-22 Multiple Regression Coefficients Standard Error t Stat P-volue Lower 95\% Upper 95\% Intercept 448.2925 90.7853 4.9379 0.0001 256.7522 639.8328 Temperature -2.7621 1.2371 -2.2327 0.0393 -5.3721 -0.1520 Insulation -15.9408 10.0638 -1.5840 0.1316 -37.1736 5.2919 Also SSR \mid =8343.3572 and SSR \mid =4199.2672 -Referring to SCENARIO 13-6, what is your decision and conclusion for the testH0 : β\beta 2 = 0 vs.H1 : β\beta 2 \neq 0 at the α\alpha = 0.01 level of significance?

(Multiple Choice)
4.9/5
(31)

When an explanatory variable is dropped from a multiple regression model, the coefficient of multiple determination can increase.

(True/False)
4.9/5
(35)

In trying to construct a model to estimate grades on a statistics test, a professor wanted to include, among other factors, whether the person had taken the course previously.To do this, the professor included a dummy variable in her regression model that was equal to 1 if the person had previously taken the course, and 0 otherwise.The interpretation of the coefficient associated with this dummy variable would be the mean amount the repeat students tended to be above or below non-repeaters, with all other factors the same.

(True/False)
4.8/5
(34)

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, what is the p-value of the test statistic when testing whetherIncome makes a significant contribution to the model in the presence of LawnSize?

(Essay)
4.8/5
(35)

SCENARIO 13-10 You worked as an intern at We Always Win Car Insurance Company last summer.You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual.You performed a regression analysis in EXCEL and obtained the following partial information: Regression Statistics Multiple R 0.8546 R Square 0.7303 Adjusted R Square 0.6853 Standard Error 226.7502 Observations 15 ANOVA df SS MS F Siqnificonce F Regression 2 835284.6500 16.2457 0.0004 Residual 12 616987.8200 Total 2287557.1200 Coefficients Standard Error t Stat P-value Lower 99\% Upper 99\% Intercept 821.2617 161.9391 5.0714 0.0003 326.6124 1315.9111 Age -1.4061 2.5988 -0.5411 0.5984 -9.3444 6.5321 Tickets 243.4401 43.2470 5.6291 0.0001 111.3406 375.5396 -Referring to SCENARIO 13-10, the proportion of the total variability in insurance premiums that can be explained by AGE and TICKETS after adjusting for the number of observations and the number independent variables is .

(Essay)
4.8/5
(39)

To properly examine the effect of a categorical independent variable in a multiple linear regression model we use an interaction term.

(True/False)
4.8/5
(23)

SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: Regression Statistics Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50 ANOVA df SS MS F Signif F Regression 37043.3236 18521.6618 0.0000 Residual 14487.7627 308.2503 Total 49 51531.0863 Coefficients Standard Error t Stat -value Intercept -5.5146 7.2273 -0.7630 0.4493 Income 0.4262 0.0392 10.8668 0.0000 Size 5.5437 1.6949 3.2708 0.0020  Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917 -Referring to SCENARIO 13-4 and allowing for a 1% probability of committing a type I error,what is the decision and conclusion for the test H: β\beta 1 β\beta 2=0 vs.H : At least one β\beta j \neq 0, j- 1, 20 1 2 1 j?

(Multiple Choice)
4.8/5
(38)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, you can conclude definitively that instructional spending per pupil individually has no impact on the mean percentage of students passing the proficiency test, considering the effect of mean teacher salary, at a 1% level of significance based solely on but not actually computing the 99% the confidence interval estimate for β\beta 2 .

(True/False)
4.8/5
(29)

SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: Regression Statistics Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50 ANOVA df SS MS F Signif F Regression 37043.3236 18521.6618 0.0000 Residual 14487.7627 308.2503 Total 49 51531.0863 Coefficients Standard Error t Stat -value Intercept -5.5146 7.2273 -0.7630 0.4493 Income 0.4262 0.0392 10.8668 0.0000 Size 5.5437 1.6949 3.2708 0.0020  Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917 -Referring to SCENARIO 13-4, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.

(Essay)
4.8/5
(41)

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, what is the p-value of the test statistic when testing whether the model is a good-fitting model?

(Essay)
4.8/5
(26)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, the null hypothesis H0 : β\beta 1 = β\beta 2 =0 implies that percentage of students passing the proficiency test is not affected by one of the explanatory variables.

(True/False)
4.8/5
(38)

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, what is the estimated probability that a home owner with a family income of $50,000 and a lawn size of 2,000 square feet will purchase a lawn service?

(Essay)
4.8/5
(34)

Which of the following is used to determine observations that have influential effect on the fitted model?

(Multiple Choice)
4.8/5
(30)

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, what are the degrees of freedom for the chi-square distribution when testing whether the model is a good-fitting model?

(Essay)
4.9/5
(25)

SCENARIO 13-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT } Regression Statistics Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10 ANOVA df SS MS F Signif F Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StdError t Stat P -value Intercept -0.0861 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 -Referring to SCENARIO 13-3, to test whether aggregate price index has a negative impact on consumption, the p-value is ?

(Multiple Choice)
4.9/5
(28)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, which of the following is the correct null hypothesis to test whether instructional spending per pupil has any effect on percentage of students passing the proficiency test, considering the effect of mean teacher salary? a) H0:β0=0H _ { 0 } : \beta _ { 0 } = 0 b) H0:β1=0H _ { 0 } : \beta _ { 1 } = 0 c) H0:β2=0H _ { 0 } : \beta _ { 2 } = 0 d) H0:β3=0H _ { 0 } : \beta _ { 3 } = 0

(Short Answer)
4.8/5
(37)

SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: Regression Statistics Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50 ANOVA df SS MS F Signif F Regression 37043.3236 18521.6618 0.0000 Residual 14487.7627 308.2503 Total 49 51531.0863 Coefficients Standard Error t Stat -value Intercept -5.5146 7.2273 -0.7630 0.4493 Income 0.4262 0.0392 10.8668 0.0000 Size 5.5437 1.6949 3.2708 0.0020  Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917 -Referring to SCENARIO 13-4, what are the regression degrees of freedom that are missing from the output?

(Multiple Choice)
4.8/5
(32)

SCENARIO 13-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to SCENARIO 13-17, we can conclude that, holding constant the effect of the other independent variable, there is a difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not at a 5% level of significance if we use only the information of the 95% confidence interval estimate for the difference in the mean number of weeks a worker is unemployed due to a layoff between a worker who is in a management position and one who is not.

(True/False)
4.9/5
(36)
Showing 241 - 260 of 307
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)