Exam 13: Multiple Regression

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

SCENARIO 13-3 An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index).The Microsoft Excel output of this regression is partially reproduced below.  SUMMARY OUTPUT \text { SUMMARY OUTPUT } Regression Statistics Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10 ANOVA df SS MS F Signif F Regression 2 33.4163 16.7082 186.325 0.0001 Residual 7 0.6277 0.0897 Total 9 34.0440 Coeff StdError t Stat P -value Intercept -0.0861 0.5674 -0.152 0.8837 GDP 0.7654 0.0574 13.340 0.0001 Price -0.0006 0.0028 -0.219 0.8330 -Referring to SCENARIO 13-3, what is the estimated mean consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

(Multiple Choice)
4.9/5
(40)

SCENARIO 13-7 The department head of the accounting department wanted to see if she could predict the GPA of students using the number of course units and total SAT scores of each.She takes a sample of 6 students and generates the following Microsoft Excel output: SUMMARY OUTPUT Regression Statistics Multiple R 0.916 R Square 0.839 Adjusted R Square 0.732 Standard Error 0.24685 Observations 6 ANOVA df SS MS F Signif F Regression 2 0.95219 0.47610 7.813 0.0646 Residual 3 0.18281 0.06094 Total 5 1.13500 Coeff StdError t Stat P -value Intercept 4.593897 1.13374542 4.052 0.0271 Units -0.247270 0.06268485 -3.945 0.0290 Total SAT 0.001443 0.00101241 1.425 0.2494 -Referring to SCENARIO 13-7, the department head wants to test H0: β\beta 1= β\beta 2 = 0 .At a level of significance of 0.05, the null hypothesis is rejected.

(True/False)
4.8/5
(32)

In a multiple regression model, the value of the coefficient of multiple determination

(Multiple Choice)
4.8/5
(25)

SCENARIO 13-8 A financial analyst wanted to examine the relationship between salary (in $1,000) and 2 variables: age (X1 = Age) and experience in the field (X2 = Exper).He took a sample of 20 employees and obtained the following Microsoft Excel output: Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20 ANOYA df SS MS F Siqnificonce F Regression 2 5086.5764 2543.2882 22.7941 0.0000 Residual 17 1896.8050 111.5768 Total 19 6983.3814 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624 -Referring to SCENARIO 13-8, the value of the adjusted coefficient of multiple determination is_.

(Essay)
4.7/5
(35)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, which of the following is the correct null hypothesis to determine whether there is a significant relationship between percentage of students passing the proficiency test and the entire set of explanatory variables? a) H0:β0=β1=β2=0H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = 0 b) H0:β1=β2=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = 0 c) H0:β0=β1=β20H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } \neq 0 d) H0:β1=β20H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } \neq 0

(Short Answer)
4.9/5
(38)

SCENARIO 13-5 A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT Regression Statistics Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26 ANOVA df SS MS F Signif F Regression 2 15579777040 7789888520 25.432 0.0001 Residual 23 7045072780 306307512 Total 25 22624849820 Coeff StdError t Stat P -value Intercept 15800.0000 6038.2999 2.617 0.0154 Capital 0.1245 0.2045 0.609 0.5485 Wages 7.0762 1.4729 4.804 0.0001 -Referring to SCENARIO 13-5, what is the p-value for testing whether Wages have a positive impact on corporate sales?

(Multiple Choice)
4.7/5
(33)

SCENARIO 13-4 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size).House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below: Regression Statistics Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50 ANOVA df SS MS F Signif F Regression 37043.3236 18521.6618 0.0000 Residual 14487.7627 308.2503 Total 49 51531.0863 Coefficients Standard Error t Stat -value Intercept -5.5146 7.2273 -0.7630 0.4493 Income 0.4262 0.0392 10.8668 0.0000 Size 5.5437 1.6949 3.2708 0.0020  Also SSR(X1X2)=36400.6326 and SSR(X2X1)=3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right)=36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right)=3297.7917 -Referring to SCENARIO 13-4, _% of the variation in the house size can be explained by the variation in the family income while holding the family size constant.

(Essay)
4.8/5
(35)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, which of the following is the correct null hypothesis to test whether mean teacher salary has any effect on percentage of students passing the proficiency test, considering the effect of instructional spending per pupil? a) H0:β0=0H _ { 0 } : \beta _ { 0 } = 0 b) H0:β1=0H _ { 0 } : \beta _ { 1 } = 0 c) H0:β2=0H _ { 0 } : \beta _ { 2 } = 0 d) H0:β3=0H _ { 0 } : \beta _ { 3 } = 0

(Short Answer)
4.9/5
(42)

SCENARIO 13-17 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: Regression Statistics Multiple R 0.6391 R Square 0.4085 Adjusted R Square 0.3765 Standard Error 18.8929 Observations 40 ANOVA df SS MS F Significance F Regression 2 9119.0897 4559.5448 12.7740 0.0000 Residual 37 13206.8103 356.9408 Total 39 22325.9 Coefficients Standard Error t Stat P -value Intercept -0.2143 11.5796 -0.0185 0.9853 Age 1.4448 0.3160 4.5717 0.0000 Manager -22.5761 11.3488 -1.9893 0.0541 -Referring to SCENARIO 13-17, which of the following is a correct statement?

(Multiple Choice)
4.9/5
(31)

SCENARIO 13-8 A financial analyst wanted to examine the relationship between salary (in $1,000) and 2 variables: age (X1 = Age) and experience in the field (X2 = Exper).He took a sample of 20 employees and obtained the following Microsoft Excel output: Regression Statistics Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20 ANOYA df SS MS F Siqnificonce F Regression 2 5086.5764 2543.2882 22.7941 0.0000 Residual 17 1896.8050 111.5768 Total 19 6983.3814 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept 1.5740 9.2723 0.1698 0.8672 -17.9888 21.1368 Age 1.3045 0.1956 6.6678 0.0000 0.8917 1.7173 Exper -0.1478 0.1944 -0.7604 0.4574 -0.5580 0.2624 -Referring to SCENARIO 13-8, the p-value of the F test for the significance of the entire regression is .

(Essay)
4.7/5
(46)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, which of the following is the correct alternative hypothesis to determine whether there is a significant relationship between percentage of students passing the proficiency test and the entire set of explanatory variables? a) H1:β0=β1=β20H _ { 1 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } \neq 0 b) H1:β1=β20H _ { 1 } : \beta _ { 1 } = \beta _ { 2 } \neq 0 c) H1H _ { 1 } : At least one of βj0\beta _ { j } \neq 0 for j=0,1,2j = 0,1,2 d) H1H _ { 1 } : At least one of βj0\beta _ { j } \neq 0 for j=1,2j = 1,2

(Short Answer)
4.8/5
(31)

SCENARIO 13-2 A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information: Employee Y(\ ) 1 10 3 0 2 12 1 5 3 15 8 1 4 17 5 8 5 20 7 12 6 25 10 9 -Referring to SCENARIO 13-2, an employee who took 12 economics courses scores 10 on the performance rating.What is her estimated expected wage rate?

(Multiple Choice)
4.8/5
(30)

SCENARIO 13-6 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y).To provide its customers with information on that matter, a large real estate firm used the following 2 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit ( X1 ) and the amount of insulation in inches ( X 2 ).Given below is EXCEL output of the regression model. Regression Statistics Multiple R 0.5270 R Square 0.2778 Adjusted R Square 0.1928 Standard Error 40.9107 Observations 20 ANOVA df SS MS F Signif F Regression 2 10943.0190 5471.5095 3.2691 0.0629 Residual 17 28452.6027 1673.6825 Total 19 39395.6218 13-22 Multiple Regression Coefficients Standard Error t Stat P-volue Lower 95\% Upper 95\% Intercept 448.2925 90.7853 4.9379 0.0001 256.7522 639.8328 Temperature -2.7621 1.2371 -2.2327 0.0393 -5.3721 -0.1520 Insulation -15.9408 10.0638 -1.5840 0.1316 -37.1736 5.2919 Also SSR \mid =8343.3572 and SSR \mid =4199.2672 -Referring to SCENARIO 13-6, the partial F test forH0: Variable X2 does not significantly improve the model after variable X1 has been includedH1: Variable X2 significantly improves the model after variable X1 has been included has and degrees of freedom.

(Essay)
4.8/5
(38)

SCENARIO 13-19 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service.A random sample of 30 home owners located in a suburban area near a large city was selected; 11 did not have a lawn service (code 0) and 19 had a lawn service (code 1).Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars) and lawn size (Lawn Size, in thousands of square feet). The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -7.8562 3.8224 -2.0553 0.0398 Income 0.0304 0.0133 2.2897 0.0220 Lawn Size 1.2804 0.6971 1.8368 0.0662 Deviance 25.3089 -Referring to SCENARIO 13-19, which of the following is the correct interpretation for theIncome slope coefficient?

(Multiple Choice)
4.8/5
(35)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, estimate the mean percentage of students passing the proficiency test for all the schools that have a mean teacher salary of 40,000 dollars, and an instructional spending per pupil of 2,000 dollars.

(Essay)
4.7/5
(29)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, which of the following is the correct alternative hypothesis to test whether mean teacher salary has any effect on percentage of students passing the proficiency test, considering the effect of instructional spending per pupil? a) H1:β00H _ { 1 } : \beta _ { 0 } \neq 0 b) H1:β10H _ { 1 } : \beta _ { 1 } \neq 0 c) H1:β20H _ { 1 } : \beta _ { 2 } \neq 0 d) H1:β30H _ { 1 } : \beta _ { 3 } \neq 0

(Short Answer)
4.9/5
(40)

SCENARIO 13-18 A logistic regression model was estimated in order to predict the probability that a randomly chosen university or college would be a private university using information on mean total Scholastic Aptitude Test score (SAT) at the university or college and whether the TOEFL criterion is at least 90 (Toefl90 = 1 if yes, 0 otherwise.) The dependent variable, Y, is school type (Type = 1 if private and 0 otherwise).There are 80 universities in the sample. The PHStat output is given below: Binary Logistic Regression Predictor Coefficients SE Coef Z p -Value Intercept -3.9594 1.6741 -2.3650 0.0180 SAT 0.0028 0.0011 2.5459 0.0109 Toefl90:1 0.1928 0.5827 0.3309 0.7407 Deviance 101.9826 -Referring to SCENARIO 13-18, what is the estimated odds ratio for a school with a mean SATscore of 1100 and a TOEFL criterion that is not at least 90?

(Essay)
4.7/5
(45)

SCENARIO 13-2 A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X1) and the number of economics courses the employee successfully completed in college (X2).The professor randomly selects 6 workers and collects the following information: Employee Y(\ ) 1 10 3 0 2 12 1 5 3 15 8 1 4 17 5 8 5 20 7 12 6 25 10 9 -Referring to SCENARIO 13-2, suppose an employee had never taken an economics course and managed to score a 5 on his performance rating.What is his estimated expected wage rate?

(Multiple Choice)
4.9/5
(33)

SCENARIO 13-5 A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies.She proceeds to randomly select 26 large corporations and record information in millions of dollars.The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT Regression Statistics Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26 ANOVA df SS MS F Signif F Regression 2 15579777040 7789888520 25.432 0.0001 Residual 23 7045072780 306307512 Total 25 22624849820 Coeff StdError t Stat P -value Intercept 15800.0000 6038.2999 2.617 0.0154 Capital 0.1245 0.2045 0.609 0.5485 Wages 7.0762 1.4729 4.804 0.0001 -Referring to SCENARIO 13-5, which of the following values for α\alpha is the smallest for which the regression model as a whole is significant?

(Multiple Choice)
4.9/5
(42)

SCENARIO 13-15 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test.She obtained the data on percentage of students passing the proficiency test (% Passing), mean teacher salary in thousands of dollars (Salaries), and instructional spending per pupil in thousands of dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = Salaries and X 2 = Spending: Regression Statistics Multiple R 0.4276 R Square 0.1828 Adjusted R Square 0.1457 Standard Error 5.7351 Observations 47 ANOVA df SS MS F Significance F Regression 2 323.8284 161.9142 4.9227 0.0118 Residual 44 1447.2094 32.8911 Total 46 1771.0378 Coefficients Standard Error t Stat P-value Lower 95\% Upper 95\% Intercept -72.9916 45.9106 -1.5899 0.1190 -165.5184 19.5352 Salary 2.7939 0.8974 3.1133 0.0032 0.9853 4.6025 Spending 0.3742 0.9782 0.3825 0.7039 -1.5972 2.3455 -Referring to SCENARIO 13-15, the alternative hypothesis H 1 :At least one of β\beta j \neq 0 for j =1, 2 implies that percentage of students passing the proficiency test is related to both of the explanatory variables.

(True/False)
4.9/5
(35)
Showing 141 - 160 of 307
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)