Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

suppose the following are fuzzy sets: F=\{0.7,0.1 Bill, 0.8 Fran, 0.3 Olive, 0.5 Tom \}, R=\{0.4 Ann, 0.9 Bill, 0.9 Fran, 0.6 Olive, 0.7 Tom \}. -  Find FR\text { Find } F \cap R \text {. }

(Short Answer)
4.9/5
(40)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1. -1, 101, 10101, 1010101, . . . .

(Short Answer)
4.9/5
(41)

determine whether the rule describes a function with the given domain and codomain. - f:RR where f(x)={x2 if x2x1 if x4f : \mathbf { R } \rightarrow \mathbf { R } \text { where } f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & \text { if } x \leq 2 \\x - 1 & \text { if } x \geq 4\end{array} \right.

(Short Answer)
4.9/5
(32)

find a formula that generates the following sequence a1, a2, a3 . . . . -15, 20, 25, 30, 35, . . . .

(Short Answer)
4.8/5
(38)

Suppose f:ZZf : \mathbf { Z } \rightarrow \mathbf { Z } has the rule f(n)=3n21f ( n ) = 3 n ^ { 2 } - 1 Determine whether ff is 1-1.

(Short Answer)
4.9/5
(35)

suppose the following are fuzzy sets: F=\{0.7,0.1 Bill, 0.8 Fran, 0.3 Olive, 0.5 Tom \}, R=\{0.4 Ann, 0.9 Bill, 0.9 Fran, 0.6 Olive, 0.7 Tom \}. -  Find Fˉ and Rˉ\text { Find } \bar { F } \text { and } \bar { R } \text {. }

(Short Answer)
4.9/5
(35)

suppose that g:AB and f:BC where A=B=C={1,2,3,4},g=g : A \rightarrow B \text { and } f : B \rightarrow C \text { where } A = B = C = \{ 1,2,3,4 \} , g = {(1,4),(2,1),(3,1),(4,2)}, and f={(1,3),(2,2),(3,4),(4,2)}\{ ( 1,4 ) , ( 2,1 ) , ( 3,1 ) , ( 4,2 ) \} \text {, and } f = \{ ( 1,3 ) , ( 2,2 ) , ( 3,4 ) , ( 4,2 ) \} \text {. } -  Find gf\text { Find } g \circ f \text {. }

(Short Answer)
4.8/5
(42)

Suppose g:RRg : \mathbf { R } \rightarrow \mathbf { R } where g(x)=x12g ( x ) = \left\lfloor \frac { x - 1 } { 2 } \right\rfloor (a) Draw the graph of g . (b) Is g 1-1? (c) Is g onto R ?

(Short Answer)
4.8/5
(34)

Suppose U={1,2, ... , 9}, A= all multiples of 2, B= all multiples of 3 , and C={3,4,5,6,7} . Find C-(B-A) .

(Short Answer)
4.8/5
(39)

determine whether the rule describes a function with the given domain and codomain. - g:NN where g(n)= any integer >ng : \mathbf { N } \rightarrow \mathbf { N } \text { where } g ( n ) = \text { any integer } > n

(Short Answer)
4.8/5
(27)

determine whether the rule describes a function with the given domain and codomain. - F:ZR where F(x)=1x25F : \mathbf { Z } \rightarrow \mathbf { R } \text { where } F ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

(Short Answer)
4.8/5
(38)

Determine whether ff is a function from the set of all bit strings to the set of integers if f(S)f ( S ) is the position of a 1 bit in the bit string S ,

(Short Answer)
4.8/5
(35)

In questions determine whether the statement is true or false. - AB=BA for all 2×2 matrices A and B\mathbf { A } \mathbf { B } = \mathbf { B } \mathbf { A } \text { for all } 2 \times 2 \text { matrices } \mathbf { A } \text { and } \mathbf { B } \text {. }

(True/False)
4.9/5
(31)

Suppose q:ABq : A \rightarrow B and f:BCf : B \rightarrow C where A={1,2,3,4}, B={a, b, c}, C={2,7,10}, and } , and ff and g are defind by g={(1, b),(2, a),(3, a),(4, b)} and ff ={(a, 10),(b, 7),(c, 2)} . Find f1f ^ { - 1 } .

(Short Answer)
4.8/5
(42)

determine whether the set is finite or infinite. If the set is finite, find its size. - {1,10,100,1000,}\{ 1,10,100,1000 , \ldots \}

(Short Answer)
4.8/5
(30)

suppose that g:AB and f:BC where A=B=C={1,2,3,4},g=g : A \rightarrow B \text { and } f : B \rightarrow C \text { where } A = B = C = \{ 1,2,3,4 \} , g = {(1,4),(2,1),(3,1),(4,2)}, and f={(1,3),(2,2),(3,4),(4,2)}\{ ( 1,4 ) , ( 2,1 ) , ( 3,1 ) , ( 4,2 ) \} \text {, and } f = \{ ( 1,3 ) , ( 2,2 ) , ( 3,4 ) , ( 4,2 ) \} \text {. } -  Find g(gg)\text { Find } g \circ ( g \circ g ) \text {. }  and g and f are defined by g={(1,b),(2,a),(3,b),(4,a)} and f={(a,8),(b,10),(c,2)}\text { and } g \text { and } f \text { are defined by } g = \{ ( 1 , b ) , ( 2 , a ) , ( 3 , b ) , ( 4 , a ) \} \text { and } f = \{ ( a , 8 ) , ( b , 10 ) , ( c , 2 ) \} \text {. }

(Short Answer)
4.8/5
(38)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. -  If AB=A, then B=A\text { If } A \oplus B = A \text {, then } B = A \text {. }

(True/False)
4.9/5
(35)

determine whether the set is finite or infinite. If the set is finite, find its size. - {1,3,5,7,}\{ 1,3,5,7 , \ldots \}

(Short Answer)
4.8/5
(34)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - {2,4}A×A\{ 2,4 \} \in A \times A

(True/False)
4.8/5
(38)

Prove that A(BC)=(AB)(AC)A \cap ( B \cup C ) = ( A \cap B ) \cup ( A \cap C ) by giving a Venn diagram proof.

(Essay)
4.9/5
(39)
Showing 181 - 200 of 214
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)