Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Give an example of a function f:ZNf : \mathbf { Z } \rightarrow \mathbf { N } that is both 1-1 and onto  N \text { N } .

(Short Answer)
5.0/5
(27)

determine whether the rule describes a function with the given domain and codomain. - F:RR where F(x)=1x5F : \mathbf { R } \rightarrow \mathbf { R } \text { where } F ( x ) = \frac { 1 } { x - 5 }

(Short Answer)
4.7/5
(37)

find the inverse of the function f or else explain why the function has no inverse. - f:RR where f(x)=2xf : \mathbf { R } \rightarrow \mathbf { R } \text { where } f ( x ) = \lfloor 2 x \rfloor

(Short Answer)
4.8/5
(38)

Prove or disprove: if A, B , and C are sets, then A(BC)=(AB)(AC)A - ( B \cap C ) = ( A - B ) \cap ( A - C )

(True/False)
4.8/5
(38)

determine whether the rule describes a function with the given domain and codomain. - f:NN where f(n)=nf : \mathbf { N } \rightarrow \mathbf { N } \text { where } f ( n ) = \sqrt { n }

(Short Answer)
4.8/5
(39)

suppose A={a,b,c}A = \{ a , b , c \} Mark the statement TRUE or FALSE. - {a,b}A×A\{ a , b \} \in A \times A

(True/False)
4.8/5
(30)

Show that (0, 1] and R have the same cardinality.

(Short Answer)
4.8/5
(35)

find a recurrence relation with initial condition(s) satisfied by the sequence. Assume a0 is the first term of the sequence. - an=2na _ { n } = 2 ^ { n }

(Short Answer)
4.9/5
(32)

find a recurrence relation with initial condition(s) satisfied by the sequence. Assume a0 is the first term of the sequence. - an=2n+1a _ { n } = 2 ^ { n } + 1

(Short Answer)
4.9/5
(30)

For each of the pairs of sets in 1-3 determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other. -The set of animals living in the ocean, the set of fish.

(Short Answer)
5.0/5
(41)

suppose A={x,y} and B={x,{x}}. Mark the statement TRUE or FALSE. A = \{ x , y \} \text { and } B = \{ x , \{ x \} \} \text {. Mark the statement TRUE or FALSE. } - P(A)=4| \mathcal { P } ( A ) | = 4

(True/False)
4.9/5
(40)

determine whether each of the following sets is countable or uncountable. For those that are countably infinite exhibit a one-to-one correspondence between the set of positive integers and that set. -The set of irrational numbers between 2 and π/2\sqrt { 2 } \text { and } \pi / 2

(Short Answer)
4.9/5
(31)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - {}P(A)\{ \varnothing \} \in \mathcal { P } ( A )

(True/False)
4.7/5
(39)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. -  There is a set A such that P(A)=12\text { There is a set } A \text { such that } | \mathcal { P } ( A ) | = 12

(True/False)
4.8/5
(26)

find a formula that generates the following sequence a1, a2, a3 . . . . -1, 0.9, 0.8, 0.7, 0.6, . . . .

(Short Answer)
4.8/5
(27)

determine whether the given set is the power set of some set. If the set is a power set, give the set of which it is a power set. -Prove that SˉTˉ=ST for all sets S and T\overline { \bar { S } \cup \bar { T } } = S \cap T \text { for all sets } S \text { and } T \text {. }

(Short Answer)
4.9/5
(38)

Suppose g:RRg : \mathbf { R } \rightarrow \mathbf { R } where g(x)=x12g ( x ) = \left\lfloor \frac { x - 1 } { 2 } \right\rfloor (a) If S={x1x6}S = \{ x \mid 1 \leq x \leq 6 \} , find g(S)g ( S ) . (b) If TT ={2} , find g1(T)g ^ { - 1 } ( T )

(Short Answer)
4.7/5
(37)

determine whether the set is finite or infinite. If the set is finite, find its size. - P({a,b,c,d}), where P denotes the power set. \mathcal { P } ( \{ a , b , c , d \} ) \text {, where } \mathcal { P } \text { denotes the power set. }

(Short Answer)
4.9/5
(39)

suppose A={a,b,c} and B={b,{c}}. Mark the statement TRUE or FALSE. A = \{ a , b , c \} \text { and } B = \{ b , \{ c \} \} \text {. Mark the statement TRUE or FALSE. } - {c}B\{ c \} \subseteq B

(True/False)
4.8/5
(32)

use a Venn diagram to determine which relationship, ,=, or \subseteq , = \text {, or } \supseteq \text {, } is true for the pair of sets. - AB,A(BA)A \cup B , A \cup ( B - A )

(Short Answer)
4.8/5
(41)
Showing 161 - 180 of 214
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)