Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Prove that there is no smallest positive rational number.

(Short Answer)
4.9/5
(34)

Prove that between every two rational numbers a/b and c/da / b \text { and } c / d (a) there is a rational number. (b) there are an infinite number of rational numbers.

(Short Answer)
4.8/5
(34)

Suppose f: R → Z where f(x) = 82x − 19. (a) If A = {x | 1 ≤ x ≤ 4} , find f(A). (b) If B={3,4,5,6,7} , find f(B) (c) If C={-9,-8} , find f1f ^ { - 1 } (C) (d) If D={0.4,0.5,0.6} , find f1f ^ { - 1 } (D)

(Short Answer)
4.9/5
(35)

suppose A={a,b,c} and B={b,{c}}. Mark the statement TRUE or FALSE. A = \{ a , b , c \} \text { and } B = \{ b , \{ c \} \} \text {. Mark the statement TRUE or FALSE. } - {b,c}P(A)\{ b , c \} \in \mathcal { P } ( A )

(True/False)
4.9/5
(22)

Find j=13i=1jij\sum _ { j = 1 } ^ { 3 } \sum _ { i = 1 } ^ { j } i _ { j } .

(Short Answer)
4.8/5
(36)

find a formula that generates the following sequence a1, a2, a3 . . . . -1, 1/3, 1/5, 1/7, 1/9, . . . .

(Short Answer)
4.7/5
(28)

Suppose f:ZZf : \mathbf { Z } \rightarrow \mathbf { Z } has the rule f(n)=3n1f ( n ) = 3 n - 1 . Determine whether ff is onto  Z \text { Z } .

(Short Answer)
5.0/5
(37)

Prove or disprove A(BC)=(AB)CA \oplus ( B \oplus C ) = ( A \oplus B ) \oplus C

(True/False)
4.8/5
(38)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. -  If AC=BC, then A=B\text { If } A \cap C = B \cap C \text {, then } A = B \text {. }

(True/False)
4.9/5
(37)

Suppose g: A → B and f: B → C, where f ◦ g is 1-1 and g is 1-1. Must f be 1-1?

(Short Answer)
4.8/5
(38)

suppose g: A → B and f:BC where A={1,2,3,4},B={a,b,c},C={2,8,10}f : B \rightarrow C \text { where } A = \{ 1,2,3,4 \} , B = \{ a , b , c \} , C = \{ 2,8,10 \} \text {, } -Explain why g1 is not a function. g ^ { - 1 } \text { is not a function. }

(Short Answer)
4.7/5
(33)

Determine whether f is a function from the set of all bit strings to the set of integers if f(S) is the largest integer i such that the ith bit of S is 0 and f(S) = 1 when S is the empty string (the string with no bits).

(Short Answer)
4.8/5
(36)

suppose that g:AB and f:BC where A=B=C={1,2,3,4},g=g : A \rightarrow B \text { and } f : B \rightarrow C \text { where } A = B = C = \{ 1,2,3,4 \} , g = {(1,4),(2,1),(3,1),(4,2)}, and f={(1,3),(2,2),(3,4),(4,2)}\{ ( 1,4 ) , ( 2,1 ) , ( 3,1 ) , ( 4,2 ) \} \text {, and } f = \{ ( 1,3 ) , ( 2,2 ) , ( 3,4 ) , ( 4,2 ) \} \text {. } -  Find gg\text { Find } g \circ g \text {. }

(Short Answer)
4.8/5
(33)

find the inverse of the function f or else explain why the function has no inverse. - f:AB where A={a,b,c},B={1,2,3} and f={(a,2),(b,1),(c,3)}f : A \rightarrow B \text { where } A = \{ a , b , c \} , B = \{ 1,2,3 \} \text { and } f = \{ ( a , 2 ) , ( b , 1 ) , ( c , 3 ) \}

(Short Answer)
4.8/5
(34)

Suppose f:NNf : \mathbf { N } \rightarrow \mathbf { N } has the rule f(n)=4n+1f ( n ) = 4 n + 1 Determine whether f is 11f \text { is } 1 - 1

(Short Answer)
4.7/5
(33)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - (1,1)A×A( 1,1 ) \in A \times A

(True/False)
4.8/5
(30)

find a recurrence relation with initial condition(s) satisfied by the sequence. Assume a0 is the first term of the sequence. - an=(1)na _ { n } = ( - 1 ) ^ { n }

(Short Answer)
4.9/5
(24)

Prove that A(BC)=(AB)(AC)A \cap ( B \cup C ) = ( A \cap B ) \cup ( A \cap C ) by giving a proof using logical equivalence.

(Essay)
4.9/5
(44)

suppose A={1,2,3,4,5}. Mark the statement TRUE or FALSE. A = \{ 1,2,3,4,5 \} \text {. Mark the statement TRUE or FALSE. } - P(A)\emptyset \subseteq \mathcal { P } ( A )

(True/False)
4.9/5
(39)

Prove that AB=AˉBˉ\overline { A \cap B } = \bar { A } \cup \bar { B } by giving a Venn diagram proof.

(Essay)
4.8/5
(32)
Showing 61 - 80 of 214
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)