Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

determine whether the rule describes a function with the given domain and codomain. - G:RR where G(x)={x+2 if x0x1 if x4G : \mathbf { R } \rightarrow \mathbf { R } \text { where } G ( x ) = \left\{ \begin{array} { l l } x + 2 & \text { if } x \geq 0 \\x - 1 & \text { if } x \leq 4\end{array} \right.

(Short Answer)
4.9/5
(35)

In questions determine whether the statement is true or false. -  If A is a 6×4 matrix and B is a 4×5 matrix, then AB has 16 entries. \text { If } \mathbf { A } \text { is a } 6 \times 4 \text { matrix and } \mathbf { B } \text { is a } 4 \times 5 \text { matrix, then } \mathbf { A B } \text { has } 16 \text { entries. }

(True/False)
4.8/5
(35)

mark each statement TRUE or FALSE. Assume that the statement applies to all sets. -  If AB=AB, then A=B\text { If } A \cap B = A \cup B , \text { then } A = B

(True/False)
4.8/5
(38)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1. -1, 111, 11111, 1111111, . . . .

(Short Answer)
4.8/5
(34)

find a formula that generates the following sequence a1, a2, a3 . . . . -2, 0, 2, 0, 2, 0, 2, . . . .

(Short Answer)
4.9/5
(29)

suppose A={x,y} and B={x,{x}}. Mark the statement TRUE or FALSE. A = \{ x , y \} \text { and } B = \{ x , \{ x \} \} \text {. Mark the statement TRUE or FALSE. } - xBx \subseteq B

(True/False)
4.7/5
(42)

In questions determine whether the statement is true or false. -  If A=(1352), then A2=(19254)\text { If } \mathbf { A } = \left( \begin{array} { c c } 1 & 3 \\- 5 & 2\end{array} \right) , \text { then } \mathbf { A } ^ { 2 } = \left( \begin{array} { c c } 1 & 9 \\25 & 4\end{array} \right)

(True/False)
4.8/5
(38)

suppose A={a,b,c}A = \{ a , b , c \} Mark the statement TRUE or FALSE. - A\emptyset \subseteq A

(True/False)
4.9/5
(28)

suppose A={a,b,c}A = \{ a , b , c \} Mark the statement TRUE or FALSE. - {b,c}P(A)\{ b , c \} \in \mathcal { P } ( A )

(True/False)
4.8/5
(27)

Suppose A is a 6 X 8 matrix, B is an 8 X 5 matrix, and C is a 5 X 9 matrix. Find the number of rows, the number of columns, and the number of entries in A(BC).

(Short Answer)
4.8/5
(28)

Prove that AB=AˉBˉ\overline { A \cap B } = \bar { A } \cup \bar { B } by giving a containment proof (that is, prove that the left side is a subset of the right side and that the right side is a subset of the left side).

(Essay)
4.9/5
(36)

for each partial function, determine its domain, codomain, domain of definition, set of values for which it is undefined or if it is a total function: -f: Z × Z → Z where f(m, n) = m − n if m > n.

(Short Answer)
4.9/5
(37)

suppose A={a,b,c}A = \{ a , b , c \} Mark the statement TRUE or FALSE. - (c,c)A×A( c , c ) \in A \times A

(True/False)
4.8/5
(37)

suppose A={a,b,c} and B={b,{c}}. Mark the statement TRUE or FALSE. A = \{ a , b , c \} \text { and } B = \{ b , \{ c \} \} \text {. Mark the statement TRUE or FALSE. } - P(B)\emptyset \in \mathcal { P } ( B )

(True/False)
4.8/5
(37)

Let f(x)=x3/3f ( x ) = \left\lfloor x ^ { 3 } / 3 \right\rfloor Finf (S) S is: (a) {-2,-1,0,1,2,3} (b) {0,1,2,3,4,5} (c) }{1,5,7,11} . (d) }\{2,6,10,14}

(Short Answer)
4.7/5
(32)

describe each sequence recursively. Include initial conditions and assume that the sequences begin with a1. -The Fibonacci numbers.

(Short Answer)
4.8/5
(38)

Prove that AB=AˉBˉ\overline { A \cap B } = \bar { A } \cup \bar { B } by giving an element table proof.

(Essay)
4.9/5
(38)

suppose the following are fuzzy sets: F=\{0.7,0.1 Bill, 0.8 Fran, 0.3 Olive, 0.5 Tom \}, R=\{0.4 Ann, 0.9 Bill, 0.9 Fran, 0.6 Olive, 0.7 Tom \}. -  Find FR\text { Find } F \cup R \text {. }

(Short Answer)
4.8/5
(26)

find the inverse of the function f or else explain why the function has no inverse. - f:RR where f(x)=3x5f : \mathbf { R } \rightarrow \mathbf { R } \text { where } f ( x ) = 3 x - 5

(Short Answer)
4.8/5
(32)

find a recurrence relation with initial condition(s) satisfied by the sequence. Assume a0 is the first term of the sequence. - an=3n1a _ { n } = 3 n - 1

(Short Answer)
4.8/5
(34)
Showing 41 - 60 of 214
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)