Exam 1: Review of Basic Concepts

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Identify the polynomial as a monomial, binomial, trinomial, or none of these. - 14s5+9s+8- 14 s ^ { 5 } + 9 s + 8

(Multiple Choice)
4.7/5
(26)

Identify the polynomial as a monomial, binomial, trinomial, or none of these. - 6x3+9w2+3w4y426 x ^ { 3 } + 9 w ^ { 2 } + 3 w - 4 y ^ { 4 } - 2

(Multiple Choice)
4.7/5
(30)

Write the expression with only positive exponents and evaluate if possible. Assume all variables represent nonzero real numbers. - 4+2xx3+16\frac { 4 + \frac { 2 } { x } } { \frac { x } { 3 } + \frac { 1 } { 6 } }

(Multiple Choice)
4.8/5
(31)

Tell whether the statement is true or false. -{8, 13, 11, 14} = {11, 8, 13}

(True/False)
4.9/5
(30)

Factor by any method. - x61x ^ { 6 } - 1

(Multiple Choice)
4.9/5
(38)

Simplify the expression. Assume all variables represent nonzero real numbers. - (8t)5( 8 \mathrm { t } ) ^ { 5 }

(Multiple Choice)
4.8/5
(36)

Determine what signs on values of x and y would make the statement true. Assume that x and y are not 0. - x2y<0x ^ { 2 } y < 0

(Multiple Choice)
4.8/5
(44)

Write the expression with only positive exponents and evaluate if possible. Assume all variables represent nonzero real numbers. - (23)4\left( \frac { 2 } { 3 } \right) ^ { - 4 }

(Multiple Choice)
4.8/5
(38)

Write the expression in lowest terms. - 18k215k\frac { 18 \mathrm { k } ^ { 2 } } { 15 \mathrm { k } }

(Multiple Choice)
4.7/5
(29)

Find the product. Assume variables represent positive real numbers. - (4p3/59p4/5)2\left( - 4 p ^ { 3 / 5 } - 9 p ^ { 4 / 5 } \right) ^ { 2 }

(Multiple Choice)
4.8/5
(35)

Evaluate the expression. - 452- 4 \cdot 5 ^ { 2 }

(Multiple Choice)
4.9/5
(29)

Use these sets to find the following. Identify any disjoint sets. -Let U={4,5,6,7,8,9,10,11,12,13,14},M={4,6,8,10},N={5,7,9,11,13},Q={4,6,8,10,12,14}\mathrm { U } = \{ 4,5,6,7,8,9,10,11,12,13,14 \} , \mathrm { M } = \{ 4,6,8,10 \} , \mathrm { N } = \{ 5,7,9,11,13 \} , \mathrm { Q } = \{ 4,6,8,10,12,14 \} , and R={4,5,6,7}R = \{ 4,5,6,7 \} . (U)R( \mathrm { U } \cup \varnothing ) \cap \mathrm { R } ^ { \prime }

(Multiple Choice)
4.8/5
(34)

Simplify the expression. Assume all variables represent positive real numbers. - 1753253\sqrt [ 3 ] { 175 } \cdot \sqrt [ 3 ] { 25 }

(Multiple Choice)
4.7/5
(35)

Determine what signs on values of x and y would make the statement true. Assume that x and y are not 0. -Use the formula  Passing Rating 85.68(CA)+4.31(YA)+326.42(TA)419.06(IA), where A= number of passes \text { Passing Rating } \approx 85.68 \left( \frac { \mathrm { C } } { \mathrm { A } } \right) + 4.31 \left( \frac { \mathrm { Y } } { \mathrm { A } } \right) + 326.42 \left( \frac { \mathrm { T } } { \mathrm { A } } \right) - 419.06 \left( \frac { \mathrm { I } } { \mathrm { A } } \right) \text {, where } \mathrm { A } = \text { number of passes } attempted, C= number of passes completed, Y = total number of yards gained passing, T = number of touchdown passes, and I = number of interceptions, to approximate the passing rating for C. Felix. Round to the nearest tenth. Quarterback A C Y T I A. Smith 438 237 3062 21 7 B. Jones 477 270 3157 25 10 C. Felix 696 342 4331 24 15

(Multiple Choice)
4.9/5
(27)

Evaluate the expression. - (164)2/3\left( - \frac { 1 } { 64 } \right) ^ { - 2 / 3 }

(Multiple Choice)
4.9/5
(35)

Evaluate the expression for x = -2, y = 3, and a = -4. - 5x6y3a5 x - 6 y - 3 a

(Multiple Choice)
4.9/5
(36)

Factor by any method. - 125a327b3125 a ^ { 3 } - 27 b ^ { 3 }

(Multiple Choice)
4.9/5
(39)

Solve the problem. - (r15)2( r - 15 ) ^ { 2 }

(Multiple Choice)
4.7/5
(29)

Find the product. - 8x2(3x5+7x3)8 x ^ { 2 } \left( 3 x ^ { 5 } + 7 x ^ { 3 } \right)

(Multiple Choice)
4.8/5
(41)

Determine what signs on values of x and y would make the statement true. Assume that x and y are not 0. - xy>0\frac { x } { y } > 0

(Multiple Choice)
5.0/5
(34)
Showing 401 - 420 of 639
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)