Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the indicated cross product. - v=i+2j3k,w=5i5jk\mathbf { v } = \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } , \quad \mathbf { w } = 5 \mathbf { i } - 5 \mathbf { j } - \mathbf { k } Find w×v\mathbf { w } \times \mathbf { v } .

(Multiple Choice)
4.8/5
(35)

Solve the problem. -If v=3i+2j\mathbf { v } = - 3 i + 2 j , find v\| v \| .

(Multiple Choice)
4.9/5
(40)

Find the indicated cross product. - v=6i+2j,w=2i4k\mathbf { v } = - 6 \mathbf { i } + 2 \mathbf { j } , \mathbf { w } = 2 \mathbf { i } - 4 \mathbf { k } Find w×v\mathbf { w } \times \mathbf { v } .

(Multiple Choice)
4.8/5
(31)

State whether the vectors are parallel, orthogonal, or neither. - v=4i2j,w=4i+2j\mathbf { v } = 4 \mathbf { i } - 2 \mathbf { j } , \quad \mathbf { w } = 4 \mathbf { i } + 2 \mathbf { j }

(Multiple Choice)
4.8/5
(45)

Find the unit vector having the same direction as v. - v=4j\mathbf { v } = - 4 \mathrm { j }

(Multiple Choice)
4.8/5
(30)

Find all the complex roots. Leave your answers in polar form with the argument in degrees. -The complex fifth roots of 2i- 2 i

(Multiple Choice)
4.7/5
(32)

Plot the point given in polar coordinates. - (3,7π6)\left(3, \frac{7 \pi}{6}\right)  Plot the point given in polar coordinates. - \left(3, \frac{7 \pi}{6}\right)

(Multiple Choice)
4.9/5
(36)

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (4,70)\left( 4,70 ^ { \circ } \right) Round the rectangular coordinates to two decimal places.

(Multiple Choice)
4.8/5
(26)

Describe the set of points (x, y, z) defined by the equation. -y = 0

(Multiple Choice)
4.9/5
(33)

Find the dot product v · w. - v=ij,w=i+j\mathbf { v } = - \mathbf { i } - \mathbf { j } , \quad \mathbf { w } = \mathbf { i } + \mathbf { j }

(Multiple Choice)
4.7/5
(32)

Choose the one alternative that best completes the statement or answers the question. Find the direction angles of the vector. Round to the nearest degree, if necessary. - v=4i+2j3k\mathbf { v } = 4 \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }

(Multiple Choice)
4.9/5
(38)

Solve the problem. Leave your answer in polar form. - z=10 4+i4 w=5 1+i1 Find zwz w .

(Multiple Choice)
4.7/5
(28)

Find the position vector for the vector having initial point P and terminal point Q. - P=(3,2,3)\mathrm { P } = ( - 3,2 , - 3 ) and Q=(2,0,1)\mathrm { Q } = ( 2,0,1 )

(Multiple Choice)
4.7/5
(36)

Choose the one alternative that best completes the statement or answers the question. Find the requested vector. - v=4i5j+k,w=5i+3jk\mathbf { v } = - 4 \mathbf { i } - 5 \mathbf { j } + \mathbf { k } , \quad \mathbf { w } = - 5 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } Find a vector orthogonal to both v\mathbf { v } and w\mathbf { w } .

(Multiple Choice)
4.8/5
(37)

Find the value of the determinant. - 6971\left| \begin{array} { r r } - 6 & 9 \\- 7 & - 1\end{array} \right|

(Multiple Choice)
4.8/5
(32)

Find the distance from P1 to P2. - P1=(0,4,4) and P2=(1,1,3)P _ { 1 } = ( 0 , - 4,4 ) \text { and } P _ { 2 } = ( - 1,1 , - 3 )

(Multiple Choice)
4.8/5
(36)

Plot the point given in polar coordinates. - (2,3600)\left( 2,360 ^ { 0 } \right)  Plot the point given in polar coordinates. - \left( 2,360 ^ { 0 } \right)

(Multiple Choice)
4.8/5
(38)

Match the graph to one of the polar equations. -Match the graph to one of the polar equations. -

(Multiple Choice)
4.8/5
(33)

Identify and graph the polar equation. - r2=4cos(2θ)r^{2}=4 \cos (2 \theta)  Identify and graph the polar equation. - r^{2}=4 \cos (2 \theta)

(Multiple Choice)
4.8/5
(38)

36.86i+25.81j36.86 \mathbf { i } + 25.81 \mathbf { j } -Two forces, F1\mathbf { F } _ { 1 } of magnitude 60 newtons ( (N)( \mathrm { N } ) and F2\mathbf { F } _ { 2 } of magnitude 70 newtons, act on an object at angles of 4040 ^ { \circ } and 130130 ^ { \circ } (respectively) with the positive xx -axis. Find the direction and magnitude of the resultant force; that is, find F1+F2\mathbf { F } _ { \mathbf { 1 } } + \mathbf { F } _ { 2 } . Round the direction and magnitude to two decimal places.

(Short Answer)
4.8/5
(30)
Showing 201 - 220 of 253
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)