Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Identify and graph the polar equation. - r=4θr=4 \theta  Identify and graph the polar equation. - r=4 \theta

(Multiple Choice)
4.8/5
(37)

Solve the problem. -If v=3i+4j\mathbf { v } = 3 \mathbf { i } + 4 \mathbf { j } , find v\| \mathbf { v } \| .

(Multiple Choice)
4.9/5
(24)

Find the dot product v · w. - v=i+j\mathbf { v } = \mathrm { i } + \mathrm { j } and w=i+jk\mathbf { w } = \mathrm { i } + \mathrm { j } - \mathbf { k }

(Multiple Choice)
4.8/5
(31)

Write the vector v in the form ai + bj, given its magnitude v and the angle  it makes with the positive x-axis. - v=7,α=60\| \mathbf { v } \| = 7 , \quad \alpha = 60 ^ { \circ }

(Multiple Choice)
4.8/5
(30)

Use the vectors in the figure below to graph the following vector.  Use the vectors in the figure below to graph the following vector.   - \mathbf { u } + \mathrm { z }     - u+z\mathbf { u } + \mathrm { z }  Use the vectors in the figure below to graph the following vector.   - \mathbf { u } + \mathrm { z }

(Multiple Choice)
4.8/5
(28)

Match the graph to one of the polar equations. -Match the graph to one of the polar equations. -

(Multiple Choice)
4.8/5
(26)

Find the position vector for the vector having initial point P and terminal point Q. - P=(0,0,0)\mathrm { P } = ( 0,0,0 ) and Q=(3,3,4)\mathrm { Q } = ( - 3,3,4 )

(Multiple Choice)
4.9/5
(38)

Find the unit vector having the same direction as v. - v=12i+5j\mathbf { v } = - 12 \mathbf { i } + 5 \mathbf { j }

(Multiple Choice)
4.8/5
(36)

Write the vector v in the form ai + bj, given its magnitude v and the angle  it makes with the positive x-axis. - v=7,α=270\| v \| = 7 , \alpha = 270 ^ { \circ }

(Multiple Choice)
4.8/5
(33)

Choose the one alternative that best completes the statement or answers the question. Find the direction angles of the vector. Round to the nearest degree, if necessary. - v=2i+3j4k\mathbf { v } = - 2 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }

(Multiple Choice)
5.0/5
(40)

Use the given vectors to find the indicated expression. - v=4i3j+2k,w=5i5j+4k,u=4i+4j4k\mathbf { v } = - 4 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } , \quad \mathbf { w } = - 5 \mathbf { i } - 5 \mathbf { j } + 4 \mathbf { k } , \quad \mathbf { u } = 4 \mathbf { i } + 4 \mathbf { j } - 4 \mathbf { k } Find w(v×u)\mathbf { w } \cdot ( \mathbf { v } \times \mathbf { u } ) .

(Multiple Choice)
4.9/5
(24)

Find the angle between v and w. Round to one decimal place, if necessary. - v=i+j\mathbf { v } = \mathrm { i } + \mathrm { j } and w=i+jk\mathbf { w } = \mathrm { i } + \mathbf { j } - \mathbf { k }

(Multiple Choice)
4.8/5
(34)

Test the equation for symmetry with respect to the given axis, line, or pole. - r=3+3cosθ;r = 3 + 3 \cos \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(34)

Solve the problem. Leave your answer in polar form. - z=2+2i w=-i Find zw.

(Multiple Choice)
4.8/5
(29)

Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w. - v=i+5j,w=i+j\mathbf { v } = \mathrm { i } + 5 \mathrm { j } , \quad \mathbf { w } = \mathrm { i } + \mathrm { j }

(Multiple Choice)
4.8/5
(33)

Use the given vectors to find the indicated expression. - v=2i+2j+2k,w=4i3j+4k,u=5i+2j+5k\mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } , \quad \mathbf { w } = - 4 \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k } , \quad \mathbf { u } = 5 \mathbf { i } + 2 \mathbf { j } + 5 \mathbf { k } Find u(v×w)\mathbf { u } \cdot ( \mathbf { v } \times \mathbf { w } ) .

(Multiple Choice)
4.9/5
(32)

Graph the polar equation. - r=515sinθr=\frac{5}{1-5 \sin \theta}  Graph the polar equation. - r=\frac{5}{1-5 \sin \theta}

(Multiple Choice)
4.9/5
(36)

Write the vector v in the form ai + bj, given its magnitude v and the angle  it makes with the positive x-axis. - v=14,α=0\| \mathbf { v } \| = 14 , \quad \alpha = 0 ^ { \circ }

(Multiple Choice)
4.8/5
(37)

Find all the complex roots. Leave your answers in polar form with the argument in degrees. -The complex fifth roots of 3+i\sqrt { 3 } + i

(Multiple Choice)
4.9/5
(32)

Write the vector v in the form ai + bj, given its magnitude v and the angle  it makes with the positive x-axis. - v=15,α=45\| \mathbf { v } \| = 15 , \alpha = 45 ^ { \circ }

(Multiple Choice)
4.8/5
(45)
Showing 121 - 140 of 253
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)