Exam 8: Polar Coordinates; Vectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the angle between v and w. Round to one decimal place, if necessary. - v=3i+2j+k and w=4i+5j+2k\mathbf { v } = 3 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } \text { and } \mathbf { w } = 4 \mathbf { i } + 5 \mathbf { j } + 2 \mathbf { k }

(Multiple Choice)
4.7/5
(36)

Use the given vectors to find the indicated expression. - v=3i4j+4k,w=2i+2j3kv = - 3 i - 4 j + 4 k , \quad w = 2 i + 2 j - 3 k Find v×(2w)v \times ( 2 w ) .

(Multiple Choice)
4.7/5
(38)

Plot the complex number in the complex plane. - 6i- 6 i  Plot the complex number in the complex plane. - - 6 i

(Multiple Choice)
4.8/5
(21)

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - θ=π3\theta=\frac{\pi}{3}  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - \theta=\frac{\pi}{3}

(Multiple Choice)
5.0/5
(39)

Plot the point given in polar coordinates. - (4,405)\left(-4,405^{\circ}\right)  Plot the point given in polar coordinates. - \left(-4,405^{\circ}\right)

(Multiple Choice)
4.8/5
(37)

Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w. - v=2i2j,w=3i+j\mathbf { v } = - 2 \mathbf { i } - 2 \mathbf { j } , \quad \mathbf { w } = 3 \mathbf { i } + \mathbf { j }

(Multiple Choice)
4.8/5
(36)

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (400,130)\left( 400,130 ^ { \circ } \right) Round the rectangular coordinates to two decimal places.

(Multiple Choice)
4.9/5
(26)

Find the dot product v · w. - v=4i,w=jv = - 4 i , \quad w = j

(Multiple Choice)
4.8/5
(35)

Find the indicated cross product. - v=2i+2j,w=3i5j+5kv = 2 i + 2 j , \quad w = - 3 i - 5 j + 5 k Find v×w\mathbf { v } \times \mathbf { w } .

(Multiple Choice)
4.8/5
(42)

Plot the point given in polar coordinates. - (4,30)\left( 4,30 ^ { \circ } \right)  Plot the point given in polar coordinates. - \left( 4,30 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(38)

Identify and graph the polar equation. - r=4sin(2θ)r=4 \sin (2 \theta)  Identify and graph the polar equation. - r=4 \sin (2 \theta)

(Multiple Choice)
4.9/5
(38)

Identify and graph the polar equation. - r=34sinθr=3-4 \sin \theta  Identify and graph the polar equation. - r=3-4 \sin \theta

(Multiple Choice)
4.9/5
(32)

Choose the one alternative that best completes the statement or answers the question. Find the direction angles of the vector. Round to the nearest degree, if necessary. - v=3i+2j6k\mathbf { v } = 3 \mathbf { i } + 2 \mathbf { j } - 6 \mathbf { k }

(Multiple Choice)
4.8/5
(35)

Plot the complex number in the complex plane. - 6+i- 6 + i  Plot the complex number in the complex plane. - - 6 + i

(Multiple Choice)
4.9/5
(36)

The rectangular coordinates of a point are given. Find polar coordinates for the point. - (7,0)( - 7,0 )

(Multiple Choice)
4.8/5
(26)

Use the vectors in the figure below to graph the following vector.  Use the vectors in the figure below to graph the following vector.   - \mathbf { v } - \mathbf { w }     - vw\mathbf { v } - \mathbf { w }  Use the vectors in the figure below to graph the following vector.   - \mathbf { v } - \mathbf { w }

(Multiple Choice)
4.8/5
(34)

Graph the polar equation. - r=41sinθr = \frac { 4 } { 1 - \sin \theta }  Graph the polar equation. - r = \frac { 4 } { 1 - \sin \theta }

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Find a vector v whose magnitude is 26 and whose component in the i direction is twice the component in the j direction.

(Multiple Choice)
4.9/5
(40)

Solve the problem. -If v=5i+j\mathbf { v } = 5 \mathbf { i } + \mathbf { j } and w=9i+j\mathbf { w } = 9 \mathrm { i } + \mathrm { j } , find v+w\| \mathbf { v } + \mathbf { w } \| .

(Multiple Choice)
4.8/5
(32)

Write the word or phrase that best completes each statement or answers the question. Solve the problem. -An airplane has an air speed of 550 miles per hour bearing N30°W. The wind velocity is 50 kilometers per hour in the direction N30°E. Find the resultant vector (with exact components) representing the path of the plane relative to the ground. To the nearest tenth, what is the ground speed of the plane? What is its direction?

(Essay)
4.9/5
(35)
Showing 41 - 60 of 253
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)