Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the grid to graph the function. Find the limit, if it exists - limx1f(x),f(x)=5x\lim _ { x \rightarrow 1 } f ( x ) , \quad f ( x ) = | 5 x |  Use the grid to graph the function. Find the limit, if it exists - \lim _ { x \rightarrow 1 } f ( x ) , \quad f ( x ) = | 5 x |

(Multiple Choice)
4.9/5
(44)

Find the derivative of the function at the given value of x. - f(x)=7x+11;x=6f ( x ) = - 7 x + 11 ; x = 6

(Multiple Choice)
4.8/5
(32)

Determine whether f is continuous at c. - f(x)=x+6(x2)(x3);c=6f ( x ) = \frac { x + 6 } { ( x - 2 ) ( x - 3 ) } ; c = - 6

(Multiple Choice)
4.8/5
(32)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -The volume of a rectangular box with square base and a height of 5 feet is V(x)=5x2V ( x ) = 5 x ^ { 2 } , where xx is the length of a side of the base. Find the instantaneous rate of change of volume with respect to xx when x=3x = 3 feet.

(Multiple Choice)
4.9/5
(34)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)=5x23xf ( x ) = 5 x ^ { 2 } - 3 x

(Multiple Choice)
4.8/5
(34)

Find the one-sided limit. - limx8x29x3\lim _ { x \rightarrow 8 ^ { - } } \frac { x ^ { 2 } - 9 } { x - 3 }

(Multiple Choice)
4.9/5
(27)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=3x22 from x=1 to x=5;n=4f ( x ) = 3 x ^ { 2 } - 2 \text { from } x = 1 \text { to } x = 5 ; n = 4

(Multiple Choice)
4.7/5
(41)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x2+x+3 from x=2 to x=1;n=3f ( x ) = 2 x ^ { 2 } + x + 3 \text { from } x = - 2 \text { to } x = 1 ; n = 3

(Multiple Choice)
4.8/5
(38)

Use a graphing utility to find the indicated limit rounded to two decimal places. - limx1x3x2+3x3x4x3+x1\lim _ { x \rightarrow - 1 } \frac { x ^ { 3 } - x ^ { 2 } + 3 x - 3 } { x ^ { 4 } - x ^ { 3 } + x - 1 }

(Multiple Choice)
4.9/5
(34)

Find the limit algebraically. - limx108x3\lim _ { x \rightarrow 10 } - 8 x ^ { 3 }

(Multiple Choice)
4.8/5
(38)

Use the grid to graph the function. Find the limit, if it exists - limxπ/2f(x),f(x)=sinx2\lim _ { x \rightarrow \pi / 2 } f ( x ) , f ( x ) = \sin x - 2  Use the grid to graph the function. Find the limit, if it exists - \lim _ { x \rightarrow \pi / 2 } f ( x ) , f ( x ) = \sin x - 2

(Multiple Choice)
4.8/5
(35)

Determine whether f is continuous at c. - f(x)=x+4(x3)(x+2);c=2f ( x ) = \frac { x + 4 } { ( x - 3 ) ( x + 2 ) } ; \quad c = - 2

(Multiple Choice)
4.8/5
(39)

Determine whether f is continuous at c. - f(x)=4x48x3+x7;c=0f ( x ) = 4 x ^ { 4 } - 8 x ^ { 3 } + x - 7 ; \quad c = 0

(Multiple Choice)
4.9/5
(37)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -Find  \mathrm { f } ( - 4 ) . -Find f(4)\mathrm { f } ( - 4 ) .

(Multiple Choice)
4.8/5
(28)

Determine whether f is continuous at c. - f(x)=x2(x+9)(x+8);c=9f ( x ) = \frac { x - 2 } { ( x + 9 ) ( x + 8 ) } ; c = - 9

(Multiple Choice)
4.9/5
(37)

Find the limit algebraically. - limx1(x22)3\lim _ { x \rightarrow - 1 } \left( x ^ { 2 } - 2 \right) ^ { 3 }

(Multiple Choice)
4.9/5
(37)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)={x216x4 if x48 if x=4f ( x ) = \left\{ \begin{aligned}\frac { x ^ { 2 } - 16 } { x - 4 } & \text { if } x \neq 4 \\8 & \text { if } x = 4\end{aligned} \right.

(Multiple Choice)
4.8/5
(45)

Find the limit algebraically. - limx6x\lim _ { x \rightarrow 6 } x

(Multiple Choice)
4.9/5
(41)

Determine whether f is continuous at c. - f(x)=5x+2;c=2f ( x ) = \frac { 5 } { x + 2 } ; c = - 2

(Multiple Choice)
4.7/5
(26)

Find the limit algebraically. - limx03tanx7x\lim _ { x \rightarrow 0 } \frac { 3 \tan x } { 7 x }

(Multiple Choice)
4.7/5
(38)
Showing 21 - 40 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)