Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the one-sided limit. - limx2+(x23x3)\lim _ { x \rightarrow 2 ^ { + } } \left( x ^ { 2 } - 3 x - 3 \right)

(Multiple Choice)
4.7/5
(34)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -The function V(r)=4πr2\mathrm { V } ( \mathrm { r } ) = 4 \pi \mathrm { r } ^ { 2 } describes the volume of a right circular cylinder of height 4 feet and radius r\mathrm { r } feet. Find the instantaneous rate of change of the volume with respect to the radius when r=11r = 11 . Leave answer in terms of π\pi

(Multiple Choice)
4.7/5
(33)

Use the TABLE feature of a graphing utility to find the limit. - limx0x2cosx\lim _ { x \rightarrow - 0 } \frac { x ^ { 2 } } { \cos x }

(Multiple Choice)
4.8/5
(33)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=x2+5x at (4,20)f ( x ) = x ^ { 2 } + 5 x \text { at } ( 4,20 )

(Multiple Choice)
5.0/5
(30)

Find the limit algebraically. - limx0(x2)\lim _ { x \rightarrow 0 } ( \sqrt { x } - 2 )

(Multiple Choice)
4.9/5
(29)

Find the limit algebraically. - limx1x41x1\lim _ { x \rightarrow 1 } \frac { x ^ { 4 } - 1 } { x - 1 }

(Multiple Choice)
4.8/5
(31)

Use the graph shown to determine if the limit exists. If it does, find its value. - limx4f(x)\lim _{x \rightarrow 4} f(x)  Use the graph shown to determine if the limit exists. If it does, find its value. - \lim _{x \rightarrow 4} f(x)

(Multiple Choice)
4.8/5
(38)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -A foul tip of a baseball is hit straight upward from a height of 4 feet with an initial velocity of 112 feet per second. The function s(t)=16t2+112t+4s ( t ) = - 16 t ^ { 2 } + 112 t + 4 describes the ball's height above the ground, s(t), in feet, tt seconds after it was hit. The ball reaches its maximum height above the ground when the instantaneous speed reaches zero. After how many seconds does the ball reach its maximum height?

(Multiple Choice)
5.0/5
(29)

Find the limit algebraically. - limx13x2\lim _ { x \rightarrow 1 } \sqrt { 3 x - 2 }

(Multiple Choice)
4.9/5
(31)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x2+x+3 from x=0 to x=6;n=6f ( x ) = 2 x ^ { 2 } + x + 3 \text { from } x = 0 \text { to } x = 6 ; n = 6

(Multiple Choice)
4.8/5
(30)

Use the TABLE feature of a graphing utility to find the limit. - limh3(h29h2+3h)\lim _ { h \rightarrow 3 } \left( \frac { h ^ { 2 } - 9 } { h ^ { 2 } + 3 h } \right)

(Multiple Choice)
4.8/5
(40)

Determine whether f is continuous at c. - f(x)=3x47x3+x2;c=2f ( x ) = 3 x ^ { 4 } - 7 x ^ { 3 } + x - 2 ; \quad c = 2

(Multiple Choice)
4.7/5
(43)

Use the TABLE feature of a graphing utility to find the limit. - limx0x+25x+2\lim _ { x \rightarrow 0 } \frac { x + 2 } { 5 x + 2 }

(Multiple Choice)
5.0/5
(40)

Determine whether f is continuous at c. - f(x)={2x+3,x<11,x=1;c=14x1,x>1f ( x ) = \left\{ \begin{aligned}- 2 x + 3 , & x < 1 \\1 , & x = 1 ; \quad c = 1 \\4 x - 1 , & x > 1\end{aligned} \right.

(Multiple Choice)
4.7/5
(30)

Find the limit algebraically. - limx0x36x+8x2\lim _ { x \rightarrow 0 } \frac { x ^ { 3 } - 6 x + 8 } { x - 2 }

(Multiple Choice)
4.9/5
(35)

Find the limit as x approaches c of the average rate of change of the function from c to x. - c=4;f(x)=3xc = 4 ; \quad f ( x ) = \frac { 3 } { x }

(Multiple Choice)
4.9/5
(37)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -What is the domain of  g  ? -What is the domain of gg ?

(Multiple Choice)
4.8/5
(31)

Determine whether f is continuous at c. - f(x)=2x48x3+x5;c=8f ( x ) = 2 x ^ { 4 } - 8 x ^ { 3 } + x - 5 ; \quad c = 8

(Multiple Choice)
4.8/5
(31)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -Find the  \mathrm { y } -intercept(s), if any, of  \mathrm { g } . -Find the y\mathrm { y } -intercept(s), if any, of g\mathrm { g } .

(Multiple Choice)
4.9/5
(38)

Find the limit algebraically. - limx2(2x+7)\lim _ { x \rightarrow 2 } ( 2 x + 7 )

(Multiple Choice)
4.9/5
(32)
Showing 121 - 140 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)