Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit algebraically. - limx(63x2)\lim _ { x \rightarrow } \left( 6 - 3 x ^ { 2 } \right)

(Multiple Choice)
4.8/5
(32)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=4x2+7x at (5,65)f ( x ) = - 4 x ^ { 2 } + 7 x \text { at } ( 5,65 )

(Multiple Choice)
4.9/5
(26)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -Find  f ( 2 ) -Find f(2)f ( 2 )

(Multiple Choice)
4.8/5
(37)

Determine whether f is continuous at c. - f(x)=x2x+9;c=9f ( x ) = \frac { x - 2 } { x + 9 } ; c = - 9

(Multiple Choice)
4.8/5
(34)

Find the one-sided limit. - limxθ+(2cosx)\lim _ { x \rightarrow \theta ^ { + } } ( 2 \cos x )

(Multiple Choice)
4.8/5
(23)

Find the limit algebraically. - limx2x74x+5\lim _ { x \rightarrow } \frac { 2 x - 7 } { 4 x + 5 }

(Multiple Choice)
4.8/5
(32)

Determine whether f is continuous at c. - f(x)=x7x+9;c=7f ( x ) = \frac { x - 7 } { x + 9 } ; c = 7

(Multiple Choice)
4.8/5
(34)

Use the graph shown to determine if the limit exists. If it does, find its value. - limx2f(x)\lim _{x \rightarrow 2} f(x)  Use the graph shown to determine if the limit exists. If it does, find its value. - \lim _{x \rightarrow 2} f(x)

(Multiple Choice)
4.9/5
(31)

Find the limit as x approaches c of the average rate of change of the function from c to x. - c=3;f(x)=5x+3c = 3 ; \quad f ( x ) = 5 x + 3

(Multiple Choice)
4.9/5
(38)

Determine whether f is continuous at c. - f(x)=1x2+8x;c=8f ( x ) = \frac { - 1 } { x ^ { 2 } + 8 x } ; \quad c = - 8

(Multiple Choice)
4.8/5
(29)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -What is the range of  g  ? -What is the range of gg ?

(Multiple Choice)
4.8/5
(35)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=x2+2 from x=1 to x=4;n=6f ( x ) = x ^ { 2 } + 2 \text { from } x = 1 \text { to } x = 4 ; n = 6

(Multiple Choice)
5.0/5
(38)

Find the limit algebraically. - limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

(Multiple Choice)
4.8/5
(29)

Determine whether f is continuous at c. - f(x)={x2+1,x<0;c=25,x0f ( x ) = \left\{ \begin{aligned}x ^ { 2 } + 1 , & x < 0 ; \quad c = - 2 \\5 , & x \geq 0\end{aligned} \right.

(Multiple Choice)
4.9/5
(38)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)=x+5x211x+24f ( x ) = \frac { x + 5 } { x ^ { 2 } - 11 x + 24 }

(Multiple Choice)
4.8/5
(33)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=2x9 at (8,7)f ( x ) = 2 x - 9 \text { at } ( 8,7 )

(Multiple Choice)
4.7/5
(33)

Find the limit algebraically. - limxx3+5x2+3x9x1\lim _ { x \rightarrow - } \frac { x ^ { 3 } + 5 x ^ { 2 } + 3 x - 9 } { x - 1 }

(Multiple Choice)
5.0/5
(36)

Determine whether f is continuous at c. - f(x)=x225x5;c=0f ( x ) = \frac { x ^ { 2 } - 25 } { x - 5 } ; \quad c = 0

(Multiple Choice)
4.7/5
(32)

Find the limit algebraically. - limx16\lim _ { x \rightarrow 1 } - 6

(Multiple Choice)
4.8/5
(30)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)={x5 if x52x10 if x>5f ( x ) = \left\{ \begin{aligned}x - 5 & \text { if } x \leq 5 \\2 x - 10 & \text { if } x > 5\end{aligned} \right.

(Multiple Choice)
4.9/5
(37)
Showing 101 - 120 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)