Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Choose the one alternative that best completes the statement or answers the question. - f(x)=xsin(10x);x=8f ( x ) = x \sin ( 10 x ) ; x = 8

(Multiple Choice)
4.9/5
(35)

Write the word or phrase that best completes each statement or answers the question. - f(x)=x3f ( x ) = \sqrt [ 3 ] { x } is defined on the interval [0,6][ 0,6 ] (a) Approximate the area A under the graph of f by partitioning [0,6][ 0,6 ] into three subintervals of equal length an choose uu as the left endpoint of each subinterval. (b) Approximate the area A under the graph of f by partitioning [0,6][ 0,6 ] into three subintervals of equal length an choose uu as the right endpoint of each subinterval. (c) Express the area A as an integral. (d) Use a graphing utility to approximate this integral to three decimal places.

(Essay)
4.9/5
(34)

Find the limit algebraically. - limx2(x3+5x27x+1)\lim _ { x \rightarrow 2 } \left( x ^ { 3 } + 5 x ^ { 2 } - 7 x + 1 \right)

(Multiple Choice)
4.7/5
(40)

Use the grid to graph the function. Find the limit, if it exists - limx2f(x),f(x)=4x+2\lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2  Use the grid to graph the function. Find the limit, if it exists - \lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2

(Multiple Choice)
4.8/5
(42)

Find the one-sided limit. - limx4+16x24x\lim _ { x - 4 ^ { + } } \frac { 16 - x ^ { 2 } } { 4 - x }

(Multiple Choice)
4.9/5
(28)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x2+x+3 from x=2 to x=1;n=6f ( x ) = 2 x ^ { 2 } + x + 3 \text { from } x = - 2 \text { to } x = 1 ; n = 6

(Multiple Choice)
4.7/5
(36)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x31f ( x ) = 2 x ^ { 3 } - 1 from x=1x = 1 to x=6;n=5x = 6 ; n = 5

(Multiple Choice)
4.8/5
(28)

Choose the one alternative that best completes the statement or answers the question. Solve the problem. -The function f(x)=x3\mathrm { f } ( \mathrm { x } ) = \mathrm { x } ^ { 3 } describes the volume of a cube, f(x)\mathrm { f } ( \mathrm { x } ) , in cubic inches, whose length, width, and height each measure xx inches. Find the instantaneous rate of change of the volume with respect to xx when x=4x = 4 inches.

(Multiple Choice)
4.7/5
(26)

Find the one-sided limit. - limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

(Multiple Choice)
4.8/5
(28)

Choose the one alternative that best completes the statement or answers the question. Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x+3 from x=0 to x=2;n=4f ( x ) = 2 x + 3 \text { from } x = 0 \text { to } x = 2 ; n = 4

(Multiple Choice)
4.7/5
(38)

Use the TABLE feature of a graphing utility to find the limit. - limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

(Multiple Choice)
4.7/5
(43)

Determine whether f is continuous at c. - f(x)=8x2+3x;c=8f ( x ) = \frac { 8 } { x ^ { 2 } + 3 x } ; \quad c = - 8

(Multiple Choice)
4.7/5
(29)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=2x2+x3 at (4,33)f ( x ) = 2 x ^ { 2 } + x - 3 \text { at } ( 4,33 )

(Multiple Choice)
4.9/5
(27)

Find the limit algebraically. - limx4(x2+4x+1)\lim _ { x \rightarrow 4 } \left( x ^ { 2 } + 4 x + 1 \right)

(Multiple Choice)
4.8/5
(39)

Find the equation of the tangent line to the graph of f at the given point. - f(x)=4x2+7x at (5,65)f ( x ) = - 4 x ^ { 2 } + 7 x \text { at } ( 5,65 )

(Multiple Choice)
4.9/5
(30)

Determine whether f is continuous at c. - f(x)=5x+7;c=0f ( x ) = \frac { 5 } { x + 7 } ; c = 0

(Multiple Choice)
4.7/5
(41)

Determine whether f is continuous at c. - f(x)=x236x6;c=6f ( x ) = \frac { x ^ { 2 } - 36 } { x - 6 } ; \quad c = - 6

(Multiple Choice)
4.8/5
(35)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)=3x1x225f ( x ) = \frac { 3 x - 1 } { x ^ { 2 } - 25 }

(Multiple Choice)
4.7/5
(26)

Use the graph shown to determine if the limit exists. If it does, find its value. - limx1f(x)\lim _{x \rightarrow-1} f(x)  Use the graph shown to determine if the limit exists. If it does, find its value. - \lim _{x \rightarrow-1} f(x)

(Multiple Choice)
4.9/5
(37)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=x2+11x15 at (1,3)f ( x ) = x ^ { 2 } + 11 x - 15 \text { at } ( 1 , - 3 )

(Multiple Choice)
4.9/5
(33)
Showing 61 - 80 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)