Exam 16: Time-Series Forecasting
Exam 1: Defining and Collecting Data202 Questions
Exam 2: Organizing and Visualizing256 Questions
Exam 3: Numerical Descriptive Measures217 Questions
Exam 4: Basic Probability167 Questions
Exam 5: Discrete Probability Distributions165 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions170 Questions
Exam 7: Sampling Distributions165 Questions
Exam 8: Confidence Interval Estimation219 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests194 Questions
Exam 10: Two-Sample Tests240 Questions
Exam 11: Analysis of Variance170 Questions
Exam 12: Chi-Square and Nonparametric188 Questions
Exam 13: Simple Linear Regression243 Questions
Exam 14: Introduction to Multiple394 Questions
Exam 15: Multiple Regression146 Questions
Exam 16: Time-Series Forecasting235 Questions
Exam 17: Getting Ready to Analyze Data386 Questions
Exam 18: Statistical Applications in Quality Management159 Questions
Exam 19: Decision Making126 Questions
Exam 20: Probability and Combinatorics421 Questions
Select questions type
SCENARIO 16-13
Given below is the monthly time series data for U.S. retail sales of building materials over a
specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive,
second-order autoregressive and third-order autoregressive model are presented below in which
the coded month for the 1st month is 0:
Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494
Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376
Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009
-Referring to Scenario 16-13, what is your forecast for the month using the third-order
autoregressive model?

(Short Answer)
4.8/5
(42)
SCENARIO 16-1
The number of cases of chardonnay wine sold by a Paso Robles winery in an 8-year period
follows. Year Cases of Wine 2006 270 2007 356 2008 398 2009 456 2010 438 2011 478 2012 460 2013 480
-Referring to Scenario 16-1, does there appear to be a relationship between year and the number of cases of wine sold?
(Multiple Choice)
4.9/5
(34)
SCENARIO 16-5
The number of passengers arriving at San Francisco on the Amtrak cross-country express on 6
successive Mondays were: 60, 72, 96, 84, 36, and 48.
-Referring to Scenario 16-5, the number of arrivals will be exponentially smoothed with a
smoothing constant of 0.25. The smoothed value for the third Monday will be __________.
(Short Answer)
4.8/5
(38)
In selecting a forecasting model, you should perform a residual analysis.
(True/False)
4.7/5
(39)
SCENARIO 16-12
A local store developed a multiplicative time-series model to forecast its revenues in future
quarters, using quarterly data on its revenues during the 5-year period from 2009 to 2013. The
following is the resulting regression equation:
where is the estimated number of contracts in a quarter
is the coded quarterly value with in the first quarter of 2008 .
is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise.
is a dummy variable equal to 1 in the second quarter of a year and 0 otherwise.
is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise.
-Referring to Scenario 16-12, the best interpretation of the coefficient of X (0.012) in the regression equation is:
(Multiple Choice)
4.8/5
(34)
SCENARIO 16-15-A
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-A.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 172719 171357 157121 155727 152974 153443 158548 162614 164210 Prod 159127 153866 165992 177843 167477 163821 161700 170348 174105 185103 184670 173385 159695 173641 165706 171164 168706 150684 179314 163802 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-A, what is the value of the t test statistic for testing the
appropriateness of the third-order autoregressive model?
(Short Answer)
4.9/5
(35)
SCENARIO 16-12
A local store developed a multiplicative time-series model to forecast its revenues in future
quarters, using quarterly data on its revenues during the 5-year period from 2009 to 2013. The
following is the resulting regression equation:
where is the estimated number of contracts in a quarter
is the coded quarterly value with in the first quarter of 2008 .
is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise.
is a dummy variable equal to 1 in the second quarter of a year and 0 otherwise.
is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise.
-Referring to Scenario 16-12, to obtain the fitted value for the first quarter of 2013 using the model, which of the following sets of values should be used in the regression equation? a)
b)
c)
d)
(Short Answer)
4.9/5
(34)
Each forecast using the method of exponential smoothing depends on all the
previous observations in the time series.
(True/False)
4.8/5
(38)
SCENARIO 16-15-B
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-B, what is your forecast for 2016 using the first-order
autoregressive model?
(Short Answer)
4.8/5
(35)
SCENARIO 16-13
Given below is the monthly time series data for U.S. retail sales of building materials over a
specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive,
second-order autoregressive and third-order autoregressive model are presented below in which
the coded month for the 1st month is 0:
Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494
Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376
Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009
-Referring to Scenario 16-13, what is the value of the t test statistic for testing the
significance of the quadratic term in the quadratic-trend model?

(Short Answer)
4.8/5
(30)
SCENARIO 16-15-A
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-A.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 172719 171357 157121 155727 152974 153443 158548 162614 164210 Prod 159127 153866 165992 177843 167477 163821 161700 170348 174105 185103 184670 173385 159695 173641 165706 171164 168706 150684 179314 163802 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-A, what is the exponentially smoothed value for 1997 using a
smoothing coefficient of W = 0.25?
(Short Answer)
4.8/5
(41)
SCENARIO 16-10
Business closures in a city in the western U.S. from 2007 to 2012 were: 2007 10 2008 11 2009 13 2010 19 2011 24 2012 35 Microsoft Excel was used to fit both first-order and second-order autoregressive models, resulting
in the following partial outputs: SUMMARY OUTPUT - Order Model Coefficients Intercept -5.77 X Variable 1 0.80 X Variable 2 1.14 SUMMARY OUTPUT - Order Model Coefficients Intercept -4.16 X Variable 1 1.59
-Referring to Scenario 16-10, the fitted values for the first-order autoregressive model are
________, ________, ________, ________, and ________.
(Short Answer)
4.7/5
(39)
SCENARIO 16-15-B
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-B, if a five-year moving average is used to smooth this series,
how many moving averages can you compute?
(Short Answer)
4.8/5
(36)
SCENARIO 16-13
Given below is the monthly time series data for U.S. retail sales of building materials over a
specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive,
second-order autoregressive and third-order autoregressive model are presented below in which
the coded month for the 1st month is 0:
Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494
Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376
Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009
-Referring to Scenario 16-13, you can reject the null hypothesis for testing the
appropriateness of the second-order autoregressive model at the 5% level of significance.

(True/False)
4.9/5
(42)
SCENARIO 16-15-B
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-B, what is the value of the t test statistic for testing the
significance of the quadratic term in the quadratic-trend model?
(Short Answer)
4.7/5
(42)
SCENARIO 16-13
Given below is the monthly time series data for U.S. retail sales of building materials over a
specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive,
second-order autoregressive and third-order autoregressive model are presented below in which
the coded month for the 1st month is 0:
Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494
Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376
Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009
-Referring to Scenario 16-13, you can conclude that the third-order
autoregressive model is appropriate at the 5% level of significance.

(True/False)
4.8/5
(37)
SCENARIO 16-15-A
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-A.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 172719 171357 157121 155727 152974 153443 158548 162614 164210 Prod 159127 153866 165992 177843 167477 163821 161700 170348 174105 185103 184670 173385 159695 173641 165706 171164 168706 150684 179314 163802 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-A, what is the exponentially smoothed forecast for 2016 using
a smoothing coefficient of W = 0.25?
(Short Answer)
4.9/5
(44)
SCENARIO 16-15-B
You are the CEO of a diary company. The total milk production (in gallons) from your company
over the past 30 years are presented below and also contained in the Excel file SCENARIO 16-
15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic
trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order
autoregressive model.
-Referring to Scenario 16-15-B, you can conclude that the first-order
autoregressive model is appropriate at the 5% level of significance.
(True/False)
4.7/5
(34)
SCENARIO 16-8
The manager of a marketing consulting firm has been examining his company's yearly profits. He
believes that these profits have been showing a quadratic trend since 1994. He uses Microsoft
Excel to obtain the partial output below. The dependent variable is profit (in thousands of
dollars), while the independent variables are coded years and squared of coded years, where 1994
is coded as 0, 1995 is coded as 1, etc.
-Referring to Scenario 16-8, the forecast for profits in 2014 is __________.

(Short Answer)
4.9/5
(40)
SCENARIO 16-4
The number of cases of merlot wine sold by a Paso Robles winery in an 8-year period follows. Year Cases of Wine 2005 270 2006 356 2007 398 2008 456 2009 358 2010 500 2011 410 2012 376
-Referring to Scenario 16-4, a centered 3-year moving average is to be constructed for the
wine sales. The result of this process will lead to a total of __________ moving averages.
(Short Answer)
4.8/5
(41)
Showing 181 - 200 of 235
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)