Exam 16: Time-Series Forecasting

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

SCENARIO 16-5 The number of passengers arriving at San Francisco on the Amtrak cross-country express on 6 successive Mondays were: 60, 72, 96, 84, 36, and 48. -Referring to Scenario 16-5, the number of arrivals will be smoothed with a 3-term moving average. There will be a total of __________ smoothed values.

(Short Answer)
4.9/5
(36)

SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  Linear trend model: \text { Linear trend model: } Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494  Quadratic trend model: \text { Quadratic trend model: }  SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year.  \begin{array} { | c | c | }  \hline \text { Month } & \text { Retail Sales } \\ \hline 1 & 6,594 \\ \hline 2 & 6,610 \\ \hline 3 & 8,174 \\ \hline 4 & 9,513 \\ \hline 5 & 10,595 \\ \hline 6 & 10,415 \\ \hline 7 & 9,949 \\ \hline 8 & 9,810 \\ \hline 9 & 9,637 \\ \hline 10 & 9,732 \\ \hline 11 & 9,214 \\ \hline 12 & 9,201 \\ \hline \end{array}  The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  \text { Linear trend model: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\ \text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494 \end{array}    \text { Quadratic trend model: }       \text { Exponential trend model: }   \begin{array}{lrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\ \text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376 \end{array}     \text { First-order autoregressive: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\ \hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\ \text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\ \hline \end{array}    -Referring to Scenario 16-13, what is the value of the t test statistic for testing the appropriateness of the second-order autoregressive model?  Exponential trend model: \text { Exponential trend model: } Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376  First-order autoregressive: \text { First-order autoregressive: } Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009 -Referring to Scenario 16-13, what is the value of the t test statistic for testing the appropriateness of the second-order autoregressive model?

(Short Answer)
4.9/5
(30)

SCENARIO 16-15-B You are the CEO of a diary company. The total milk production (in gallons) from your company over the past 30 years are presented below and also contained in the Excel file SCENARIO 16- 15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model. -Referring to Scenario 16-15-B, what is the p-value of the t test statistic for testing the appropriateness of the second-order autoregressive model?

(Short Answer)
4.7/5
(42)

SCENARIO 16-5 The number of passengers arriving at San Francisco on the Amtrak cross-country express on 6 successive Mondays were: 60, 72, 96, 84, 36, and 48. -Referring to Scenario 16-5, exponentially smooth the number of arrivals using a smoothing constant of 0.25.

(Essay)
4.9/5
(41)

SCENARIO 16-15-B You are the CEO of a diary company. The total milk production (in gallons) from your company over the past 30 years are presented below and also contained in the Excel file SCENARIO 16- 15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model. -Referring to Scenario 16-15-B, what is the value of the t test statistic for testing the appropriateness of the second-order autoregressive model?

(Short Answer)
4.8/5
(29)

A second-order autoregressive model for average mortgage rate is: Ratei=2.0+1.8 (Rate )i10.5 (Rate )i2\left. \left. \operatorname { Rate } _ { i } = - 2.0 + 1.8 \text { (Rate } \right) _ { i - 1 } - 0.5 \text { (Rate } \right) _ { i - 2 } . If the average mortgage rate in 2012 was 7.0, and in 2011 was 6.4, the forecast for 2014 is __________.

(Short Answer)
4.9/5
(38)

SCENARIO 16-15-A You are the CEO of a diary company. The total milk production (in gallons) from your company over the past 30 years are presented below and also contained in the Excel file SCENARIO 16- 15-A.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 172719 171357 157121 155727 152974 153443 158548 162614 164210 Prod 159127 153866 165992 177843 167477 163821 161700 170348 174105 185103 184670 173385 159695 173641 165706 171164 168706 150684 179314 163802 You want to predict your company's future total milk production using the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model. -Referring to Scenario 16-15-A, what is the p-value of the t test statistic for testing the appropriateness of the second-order autoregressive model?

(Short Answer)
5.0/5
(39)

SCENARIO 16-5 The number of passengers arriving at San Francisco on the Amtrak cross-country express on 6 successive Mondays were: 60, 72, 96, 84, 36, and 48. -Referring to Scenario 16-5, the number of arrivals will be smoothed with a 5-term moving average. The last smoothed value will be __________.

(Short Answer)
4.9/5
(35)

A model that can be used to make predictions about long-term future values of a time series is

(Multiple Choice)
4.9/5
(39)

SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  Linear trend model: \text { Linear trend model: } Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494  Quadratic trend model: \text { Quadratic trend model: }  SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year.  \begin{array} { | c | c | }  \hline \text { Month } & \text { Retail Sales } \\ \hline 1 & 6,594 \\ \hline 2 & 6,610 \\ \hline 3 & 8,174 \\ \hline 4 & 9,513 \\ \hline 5 & 10,595 \\ \hline 6 & 10,415 \\ \hline 7 & 9,949 \\ \hline 8 & 9,810 \\ \hline 9 & 9,637 \\ \hline 10 & 9,732 \\ \hline 11 & 9,214 \\ \hline 12 & 9,201 \\ \hline \end{array}  The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  \text { Linear trend model: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\ \text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494 \end{array}    \text { Quadratic trend model: }       \text { Exponential trend model: }   \begin{array}{lrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\ \text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376 \end{array}     \text { First-order autoregressive: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\ \hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\ \text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\ \hline \end{array}    -Referring to Scenario 16-13, you can reject the null hypothesis for testing the appropriateness of the third-order autoregressive model at the 5% level of significance.  Exponential trend model: \text { Exponential trend model: } Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376  First-order autoregressive: \text { First-order autoregressive: } Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009 -Referring to Scenario 16-13, you can reject the null hypothesis for testing the appropriateness of the third-order autoregressive model at the 5% level of significance.

(True/False)
4.7/5
(35)

The effect of an unpredictable, rare event will be contained in the ___________ component.

(Multiple Choice)
4.8/5
(35)

SCENARIO 16-4 The number of cases of merlot wine sold by a Paso Robles winery in an 8-year period follows. Year Cases of Wine 2005 270 2006 356 2007 398 2008 456 2009 358 2010 500 2011 410 2012 376 -Referring to Scenario 16-4, a centered 5-year moving average is to be constructed for the wine sales. The moving average for 2010 is __________.

(Short Answer)
4.9/5
(29)

SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  Linear trend model: \text { Linear trend model: } Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494  Quadratic trend model: \text { Quadratic trend model: }  SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year.  \begin{array} { | c | c | }  \hline \text { Month } & \text { Retail Sales } \\ \hline 1 & 6,594 \\ \hline 2 & 6,610 \\ \hline 3 & 8,174 \\ \hline 4 & 9,513 \\ \hline 5 & 10,595 \\ \hline 6 & 10,415 \\ \hline 7 & 9,949 \\ \hline 8 & 9,810 \\ \hline 9 & 9,637 \\ \hline 10 & 9,732 \\ \hline 11 & 9,214 \\ \hline 12 & 9,201 \\ \hline \end{array}  The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  \text { Linear trend model: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\ \text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494 \end{array}    \text { Quadratic trend model: }       \text { Exponential trend model: }   \begin{array}{lrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\ \text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376 \end{array}     \text { First-order autoregressive: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\ \hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\ \text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\ \hline \end{array}    -Referring to Scenario 16-13, what is your forecast for the  13 ^ { \text {th } }  month using the linear-trend model?  Exponential trend model: \text { Exponential trend model: } Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376  First-order autoregressive: \text { First-order autoregressive: } Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009 -Referring to Scenario 16-13, what is your forecast for the 13th 13 ^ { \text {th } } month using the linear-trend model?

(Short Answer)
4.8/5
(29)

SCENARIO 16-12 A local store developed a multiplicative time-series model to forecast its revenues in future quarters, using quarterly data on its revenues during the 5-year period from 2009 to 2013. The following is the resulting regression equation: log10Y^=6.102+0.012X0.129Q10.054Q2+0.098Q3\log _ { 10 } \hat { Y } = 6.102 + 0.012 X - 0.129 Q _ { 1 } - 0.054 Q _ { 2 } + 0.098 Q _ { 3 } where Y^\hat { Y } is the estimated number of contracts in a quarter XX is the coded quarterly value with X=0X = 0 in the first quarter of 2008 . Q1Q _ { 1 } is a dummy variable equal to 1 in the first quarter of a year and 0 otherwise. Q2Q _ { 2 } is a dummy variable equal to 1 in the second quarter of a year and 0 otherwise. Q3Q _ { 3 } is a dummy variable equal to 1 in the third quarter of a year and 0 otherwise. -Referring to Scenario 16-12, the best interpretation of the coefficient of Q2 (-0.054) in the regression equation is:

(Multiple Choice)
4.8/5
(25)

SCENARIO 16-15-A You are the CEO of a diary company. The total milk production (in gallons) from your company over the past 30 years are presented below and also contained in the Excel file SCENARIO 16- 15-A.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 172719 171357 157121 155727 152974 153443 158548 162614 164210 Prod 159127 153866 165992 177843 167477 163821 161700 170348 174105 185103 184670 173385 159695 173641 165706 171164 168706 150684 179314 163802 You want to predict your company's future total milk production using the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model. -Referring to Scenario 16-15-A, what is the exponentially smoothed forecast for 2016 using a smoothing coefficient of W = 0.5?

(Short Answer)
4.9/5
(38)

SCENARIO 16-11 The manager of a health club has recorded mean attendance in newly introduced step classes over the last 15 months: 32.1, 39.5, 40.3, 46.0, 65.2, 73.1, 83.7, 106.8, 118.0, 133.1, 163.3, 182.8, 205.6, 249.1, and 263.5. She then used Microsoft Excel to obtain the following partial output for both a first- and second-order autoregressive model. SCENARIO 16-11 The manager of a health club has recorded mean attendance in newly introduced step classes over the last 15 months: 32.1, 39.5, 40.3, 46.0, 65.2, 73.1, 83.7, 106.8, 118.0, 133.1, 163.3, 182.8, 205.6, 249.1, and 263.5. She then used Microsoft Excel to obtain the following partial output for both a first- and second-order autoregressive model.   -Referring to Scenario 16-11, using the first-order model, the forecast of mean attendance for month 16 is __________. -Referring to Scenario 16-11, using the first-order model, the forecast of mean attendance for month 16 is __________.

(Short Answer)
4.9/5
(37)

SCENARIO 16-3 The following table contains the number of complaints received in a department store for the first 6 months of last year. Month Complaints January 36 February 45 March 81 April 90 May 108 June 144 -Referring to Scenario 16-3, suppose the last two smoothed values are 81 and 96 (Note: they are not). What would you forecast as the value of the time series for September?

(Multiple Choice)
4.8/5
(36)

SCENARIO 16-9 Given below are EXCEL outputs for various estimated autoregressive models for a company's real operating revenues (in billions of dollars) from 1989 to 2012. From the data, you also know that the real operating revenues for 2010, 2011, and 2012 are 11.7909, 11.7757 and 11.5537, respectively. First-Order Autoregressive Model: Coefficients Standard Eiror t Stat P -value Intercept 0.1802 0.3980 0.4528 0.6553 XLag1 1.0112 0.0497 20.3526 0.0000 Second-Order Autoregressive Model: Coefficients Standard Error t Stat P -value Intercept 0.3005 0.4408 0.6817 0.5036 X Lag 1 1.1732 0.2347 4.9980 0.0001 X Lag 2 -0.1830 0.2507 -0.7300 0.4743 Third-Order Autoregressive Model: Coefficients Standard Error t Stat P-value Intercept 0.3130 0.5144 0.6085 0.5509 XLag1 1.1737 0.2465 4.7617 0.0002 XLag2 -0.0694 0.3731 -0.1860 0.8547 XLag3 -0.1221 0.2820 -0.4330 0.6704 -Referring to Scenario 16-9, if one decides to use the Third-Order Autoregressive model , what will the predicted real operating revenue for the company be in 2014?

(Multiple Choice)
4.8/5
(33)

SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year. Month Retail Sales 1 6,594 2 6,610 3 8,174 4 9,513 5 10,595 6 10,415 7 9,949 8 9,810 9 9,637 10 9,732 11 9,214 12 9,201 The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  Linear trend model: \text { Linear trend model: } Coefficients Standard Error t Stat P-value Intercept 7950.7564 617.6342 12.8729 0.0000 Coded Month 212.6503 95.1145 2.2357 0.0494  Quadratic trend model: \text { Quadratic trend model: }  SCENARIO 16-13 Given below is the monthly time series data for U.S. retail sales of building materials over a specific year.  \begin{array} { | c | c | }  \hline \text { Month } & \text { Retail Sales } \\ \hline 1 & 6,594 \\ \hline 2 & 6,610 \\ \hline 3 & 8,174 \\ \hline 4 & 9,513 \\ \hline 5 & 10,595 \\ \hline 6 & 10,415 \\ \hline 7 & 9,949 \\ \hline 8 & 9,810 \\ \hline 9 & 9,637 \\ \hline 10 & 9,732 \\ \hline 11 & 9,214 \\ \hline 12 & 9,201 \\ \hline \end{array}  The results of the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model are presented below in which the coded month for the 1st month is 0:  \text { Linear trend model: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 7950.7564 & 617.6342 & 12.8729 & 0.0000 \\ \text { Coded Month } & 212.6503 & 95.1145 & 2.2357 & 0.0494 \end{array}    \text { Quadratic trend model: }       \text { Exponential trend model: }   \begin{array}{lrrrr} \hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } \\ \hline \text { Intercept } & 3.8912 & 0.0315 & 123.3674 & 0.0000 \\ \text { Coded Month } & 0.0116 & 0.0049 & 2.3957 & 0.0376 \end{array}     \text { First-order autoregressive: }   \begin{array}{lrrrr}  & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & {\text { P-value }} \\ \hline \text { Intercept } & 3132.0951 & 1287.2899 & 2.4331 & 0.0378 \\ \text { YLag1 } & 0.6823 & 0.1398 & 4.8812 & 0.0009 \\ \hline \end{array}    -Referring to Scenario 16-13, if a five-month moving average is used to smooth this series, what would be the last calculated value?  Exponential trend model: \text { Exponential trend model: } Coefficients Standard Error t Stat P-value Intercept 3.8912 0.0315 123.3674 0.0000 Coded Month 0.0116 0.0049 2.3957 0.0376  First-order autoregressive: \text { First-order autoregressive: } Coefficients Standard Error t Stat P-value Intercept 3132.0951 1287.2899 2.4331 0.0378 YLag1 0.6823 0.1398 4.8812 0.0009 -Referring to Scenario 16-13, if a five-month moving average is used to smooth this series, what would be the last calculated value?

(Short Answer)
4.7/5
(43)

SCENARIO 16-15-B You are the CEO of a diary company. The total milk production (in gallons) from your company over the past 30 years are presented below and also contained in the Excel file SCENARIO 16- 15-B.XLSX. Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Milk 150201 193718 212520 214553 237507 248069 241824 234627 252049 252029 Prod 263449 260689 247900 260059 268197 249477 246216 265236 256364 241705 245932 243529 241551 247697 248454 241974 235823 243517 238490 248606 You want to predict your company's future total milk production using the linear trend, quadratic trend, exponential trend, first-order autoregressive, second-order autoregressive and third-order autoregressive model. -Referring to Scenario 16-15-B, what is the exponentially smoothed value for 1986 using a smoothing coefficient of W = 0.25?

(Short Answer)
4.8/5
(42)
Showing 61 - 80 of 235
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)