Exam 5: Inverse, Exponential, and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the function with its graph. - f(x)=log5(x1)f ( x ) = \log _ { 5 } ( x - 1 )

(Multiple Choice)
4.9/5
(34)

Determine whether or not the function is one-to-one. -Determine whether or not the function is one-to-one. -

(True/False)
4.7/5
(23)

Find the value. Give an approximation to four decimal places. - log629log328\log 629 - \log 328

(Multiple Choice)
4.7/5
(40)

Find the function value. If the result is irrational, round your answer to the nearest thousandth. -Let f(x)=(13)xf ( x ) = \left( \frac { 1 } { 3 } \right) ^ { x } . Find f(52)f \left( \frac { 5 } { 2 } \right)

(Multiple Choice)
4.8/5
(36)

Find the value. Give an approximation to four decimal places. -log(320 × 39)

(Multiple Choice)
4.9/5
(32)

Let f(x) compute the cost of a rental car after x days of use at $45 per day. What is the interpretation of the solution of f1(x)=96\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = 96 ?

(Multiple Choice)
4.9/5
(40)

 Explain why log213 is between 3 and 4\text { Explain why } \log _ { 2 } 13 \text { is between } 3 \text { and } 4 \text {. }

(Essay)
4.9/5
(37)

Use the alphabet coding method (A=1,B=2,C=3,Z=26)( A = 1 , B = 2 , C = 3 , \ldots Z = 26 ) to solve the problem. -The function defined by f(x)=3x4f ( x ) = 3 x - 4 was used to encode a message as: 38 11 62 11 50 -1 17 -1 23 38 Find the inverse function and determine the message.

(Essay)
4.8/5
(32)

How long will it take a sample of radioactive substance to decay to half of its original amount, if it decays according to the functi A(t)=250e.223t\mathrm { A } ( \mathrm { t } ) = 250 \mathrm { e } ^ { - .223 \mathrm { t } } , where t is the time in years? Round your answer to the nearest Hundredth year.

(Multiple Choice)
4.9/5
(36)

Solve the equation. - 16=b2/516 = b ^ { 2 / 5 }

(Multiple Choice)
4.9/5
(33)

Use a graphing calculator to estimate the solution set of the equation. Round to the nearest hundredth. - 2x=5x2 - x = 5 ^ { - x }

(Multiple Choice)
4.9/5
(39)

The sales of a mature product (one which has passed its peak) will decline according to the function S(t)=S0eat\mathrm { S } ( \mathrm { t } ) = \mathrm { S } _ { 0 } \mathrm { e } ^ { - \mathrm { at } } , where t\mathrm { t } is time in years since the peak sales. Find the sales of a product 17 years after its peak sales if a=0.24\mathrm { a } = 0.24 and S0=50,900\mathrm { S } _ { 0 } = 50,900 .

(Multiple Choice)
4.8/5
(36)

Provide an appropriate response. -Give an equation of the form f(x)=ax\mathrm { f } ( \mathrm { x } ) = \mathrm { a } ^ { \mathrm { x } } to define the exponential function whose graph contains the point ( 2,9 )) . Assume that a>0a > 0 .

(Multiple Choice)
4.8/5
(32)

Write an equivalent expression in exponential form. - log255=12\log _ { 25 } 5 = \frac { 1 } { 2 }

(Multiple Choice)
4.7/5
(33)

If f(x)=log3x\mathrm { f } ( \mathrm { x } ) = \log _ { 3 } x , find f(32)\mathrm { f } \left( 3 ^ { 2 } \right) .

(Multiple Choice)
4.8/5
(29)

The half-life of an element is 4.5×1011 yr. 4.5 \times 10 ^ { 11 } \text { yr. } How long does it take a sample of the element to decay to 23\frac { 2 } { 3 } of its original mass? Use A=A0(0.5)(t/T)\mathrm { A } = \mathrm { A } _ { 0 } ( 0.5 ) ^ { ( \mathrm { t } / \mathrm { T } ) } where A0\mathrm { A } 0 is the initial amount, T is the half-life, and t is the time. (Express results in scientific notation, rounded to the nearest hundredth.)

(Multiple Choice)
4.8/5
(26)

Determine whether or not the function is one-to-one. - f(x)=16x2f ( x ) = \sqrt { 16 - x ^ { 2 } }

(True/False)
4.8/5
(43)

Decide whether the pair of functions graphed are inverses. -Decide whether the pair of functions graphed are inverses. -

(True/False)
4.8/5
(26)

What is the domain of the function y=log8x?y = \log _ { 8 } x ?

(Multiple Choice)
4.7/5
(33)

An earthquake had an intensity 106.110 ^ { 6.1 } times more powerful than a reference level earthquake, or 106.1I0106.1 \cdot \mathrm { I } _ { 0 } . What was the magnitude of this earthquake on the Richter scale? R=log0(I/I0)\mathrm { R } = \log _ { 0 } \left( \mathrm { I } / \mathrm { I } _ { 0 } \right) .

(Multiple Choice)
4.8/5
(43)
Showing 421 - 440 of 472
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)