Exam 5: Inverse, Exponential, and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Round your answer to the nearest tenth, when appropriate. Use the formula pH=log[H3O+]\mathrm { pH } = - \log \left[ \mathrm { H } _ { 3 } \mathrm { O } ^ { + } \right] , as needed. -Find [H3O+]\left[ \mathrm { H } _ { 3 } \mathrm { O } ^ { + } \right] if the pH=1.4\mathrm { pH } = 1.4 .

(Multiple Choice)
4.8/5
(40)

 With the function f(x)=logax, why can’t x be less than 0\text { With the function } f ( x ) = \log _ { a } x \text {, why can't } x \text { be less than } 0

(Essay)
4.8/5
(33)

The graph of a function f is given. Use the graph to find the indicated value. - f1(1)\mathrm { f } ^ { - 1 } ( 1 )  The graph of a function f is given. Use the graph to find the indicated value. - \mathrm { f } ^ { - 1 } ( 1 )

(Multiple Choice)
4.7/5
(28)

Determine whether the statement is true or false. -If a function f has an inverse, then the graph of f1f ^ { - 1 } can be obtained by reflecting the graph of f across the x-axis.

(True/False)
4.8/5
(41)

Solve the equation and express the solution in exact form. - log5x=log5x\log 5 x = \sqrt { \log 5 x }

(Multiple Choice)
4.7/5
(34)

Solve the equation and express the solution in exact form. - ln(2x1)+ln(x5)=ln5\ln ( 2 x - 1 ) + \ln ( x - 5 ) = \ln 5

(Multiple Choice)
4.8/5
(44)

Decide whether the given functions are inverses. - f=\{(-3,-6),(0,4),(4,-3),(8,10)\} g=\{(-6,-3),(4,0),(-3,4),(10,8)\}

(True/False)
4.8/5
(37)

Write an equivalent expression in exponential form. - log1010=1\log _ { 10 } 10 = 1

(Multiple Choice)
4.9/5
(34)

Determine whether or not the function is one-to-one. - f(x)=x2+1f ( x ) = x ^ { 2 } + 1

(True/False)
4.8/5
(47)

Find the function value. If the result is irrational, round your answer to the nearest thousandth. -  Let f(x)=2x. Find f(4.5)\text { Let } f ( x ) = 2 ^ { x } \text {. Find } f ( 4.5 )

(Multiple Choice)
4.9/5
(39)

In the formula N N=Iekt\mathrm { N } = \mathrm { Ie }^ { kt } , N is the number of items in terms of an initial population I at a given time t and k is a growth constant equal to the percent of growth per unit time. How long will it take for the population of a Certain country to triple if its annual growth rate is 5.7%? Round to the nearest year.

(Multiple Choice)
4.9/5
(30)

Write the expression as a single logarithm with coefficient 1. Assume all variables represent positive real numbers with a1 and b1a \neq 1 \text { and } b \neq 1 . - 13log3(x6)+16log3(x6)19log3x\frac { 1 } { 3 } \log _ { 3 } \left( x ^ { 6 } \right) + \frac { 1 } { 6 } \log _ { 3 } \left( x ^ { 6 } \right) - \frac { 1 } { 9 } \log _ { 3 } x

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response. -Give an equation of the form f(x)=axf ( x ) = a ^ { x } to define the exponential function whose graph contains the point (4,14096)\left( 4 , \frac { 1 } { 4096 } \right) . Assume that a>0a > 0 .

(Multiple Choice)
4.9/5
(40)

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent positive real numbers. - log12(17mn)\log _ { 12 } \left( \frac { 17 \sqrt { \mathrm { m } } } { \mathrm { n } } \right)

(Multiple Choice)
4.9/5
(36)

Use a graphing calculator to estimate the solution set of the equation. Round to the nearest hundredth. - (13)x=12\left( \frac { 1 } { 3 } \right) ^ { x } = 12

(Multiple Choice)
4.7/5
(41)

Given log1020.3010 and log1030.4771\log _ { 10 } 2 \approx 0.3010 \text { and } \log _ { 10 } 3 \approx 0.4771 find the logarithm without using a calculator. - log1024\log 10 \sqrt { 24 }

(Multiple Choice)
4.8/5
(33)

Provide an appropriate response. -Explain how the graph of y=5(14)x can be obtained from the graph of y=4xy = - 5 \left( \frac { 1 } { 4 } \right) ^ { x } \text { can be obtained from the graph of } y = 4 ^ { x }

(Essay)
4.8/5
(29)

If the function is one-to-one, find its inverse. If not, write "not one-to-one." - f(x)=x7,x7f ( x ) = \sqrt { x - 7 } , x \geq 7

(Multiple Choice)
4.8/5
(34)

If f(x)=2xf ( x ) = 2 ^ { x } , find f[log2(ln2)]f [ \log 2 ( \ln 2 ) ]

(Multiple Choice)
4.9/5
(34)

Use a graphing calculator to estimate the solution set of the equation. Round to the nearest hundredth. - 3x=153 ^ { x } = 15

(Multiple Choice)
4.9/5
(28)
Showing 441 - 460 of 472
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)