Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. - f(x)=tanxf ( x ) = \tan x is defined over the interval [0,32]\left[ 0 , \frac { 3 } { 2 } \right] (a) Approximate the area A by partitioning [0,32]\left[ 0 , \frac { 3 } { 2 } \right] into 4 subintervals of equal length and choosing u as the left endpoint of each subinterval. (b) Approximate the area A by partitioning [0,32]\left[ 0 , \frac { 3 } { 2 } \right] into 8 subintervals of equal length and choosing u\mathrm { u } as the right endpoint of each subinterval. (c) Express the area A as an integral. (d) Use a graphing utility to approximate this integral to three decimal places.

Free
(Short Answer)
4.9/5
(37)
Correct Answer:
Verified

(a) 1.282 (b) 1.760 (c) 03/2tanxdx\int _ { 0 } ^ { 3 / 2 } \tan x d x (d) 2.649

Find the one-sided limit. - limxθ+(2cosx)\lim _ { x \rightarrow \theta ^ { + } } ( 2 \cos x )

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

B

Find the limit algebraically. - limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

Free
(Multiple Choice)
4.9/5
(32)
Correct Answer:
Verified

A

Solve the problem. -The volume V\mathrm { V } of a right circular cylinder of height 2 and radius r\mathrm { r } is V(r)=2πr2\mathrm { V } ( \mathrm { r } ) = 2 \pi \mathrm { r } ^ { 2 } . Find the instantaneous rate of change of volume with respect to radius rr when r=7r = 7 .

(Multiple Choice)
4.9/5
(32)

Determine whether f is continuous at c. - f(x)={1x2,x>2x2+5x,x2;c=2f ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x - 2 } , & x > 2 \\x ^ { 2 } + 5 x , & x \leq 2\end{array} ; \quad c = 2 \right.

(Multiple Choice)
4.7/5
(42)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)={x5 if x52x10 if x>5f ( x ) = \left\{ \begin{aligned}x - 5 & \text { if } x \leq 5 \\2 x - 10 & \text { if } x > 5\end{aligned} \right.

(Multiple Choice)
5.0/5
(37)

Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x+3 from x=0 to x=2;n=4f ( x ) = 2 x + 3 \text { from } x = 0 \text { to } x = 2 ; n = 4

(Multiple Choice)
4.9/5
(34)

Find the derivative of the function at the given value of x. - f(x)=x320;x=3f ( x ) = x ^ { 3 } - 20 ; x = 3

(Multiple Choice)
4.9/5
(31)

Find the one-sided limit. - limx0(45x)\lim _ { x \rightarrow 0 ^ { - } } ( 4 - 5 x )

(Multiple Choice)
4.9/5
(31)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=2x2+x3 at (4,33)f ( x ) = 2 x ^ { 2 } + x - 3 \text { at } ( 4,33 )

(Multiple Choice)
4.7/5
(38)

Find the limit algebraically. - limx16\lim _ { x \rightarrow - 1 } - 6

(Multiple Choice)
4.8/5
(36)

Find the limit algebraically. - limx0(x5)(x+5)\lim _ { x \rightarrow0 } ( x - \sqrt { 5 } ) ( x + \sqrt { 5 } )

(Multiple Choice)
4.7/5
(31)

Use the TABLE feature of a graphing utility to find the limit. - limxθ(exex)\lim _ { x \rightarrow \theta } \left( e ^ { x } - e ^ { - x } \right)

(Multiple Choice)
4.8/5
(35)

Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x2+x+3 from x=2 to x=1;n=3f ( x ) = 2 x ^ { 2 } + x + 3 \text { from } x = - 2 \text { to } x = 1 ; n = 3

(Multiple Choice)
4.9/5
(33)

Find the equation of the tangent line to the graph of f at the given point. - f(x)=5x2+x at (4,76)f ( x ) = 5 x ^ { 2 } + x \text { at } ( - 4,76 )

(Multiple Choice)
4.8/5
(46)

Find the limit algebraically. - limx3x29x3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x - 3 }

(Multiple Choice)
4.9/5
(42)

Find the limit algebraically. - limx1x41x1\lim _ { x \rightarrow 1 } \frac { x ^ { 4 } - 1 } { x - 1 }

(Multiple Choice)
4.8/5
(30)

Find the limit algebraically. - limx108x3\lim _ { x \rightarrow 10 } - 8 x ^ { 3 }

(Multiple Choice)
4.7/5
(32)

Write the word or phrase that best completes each statement or answers the question. Determine where the rational function is undefined. Determine whether an asymptote of a hole appears at such numbers. - R(x)=x3x2+x1x4x3+3x3R ( x ) = \frac { x ^ { 3 } - x ^ { 2 } + x - 1 } { x ^ { 4 } - x ^ { 3 } + 3 x - 3 }

(Essay)
4.8/5
(40)

Find the derivative of the function at the given value of x using a graphing utility. If necessary, round to four decimal places. - f(x)=xsin(10x);x=8f ( x ) = x \sin ( 10 x ) ; x = 8

(Multiple Choice)
4.9/5
(38)
Showing 1 - 20 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)