Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the TABLE feature of a graphing utility to find the limit. - limh3(h29h2+3h)\lim _ { h \rightarrow 3 } \left( \frac { h ^ { 2 } - 9 } { h ^ { 2 } + 3 h } \right)

(Multiple Choice)
4.8/5
(38)

Solve the problem. -An explosion causes debris to rise vertically with an initial velocity of 96 feet per second. The function s(t)=16t2+96ts ( t ) = - 16 t ^ { 2 } + 96 t describes the height of the debris above the ground, s(t), in feet, t seconds after the explosion. What is the instantaneous speed of the debris 4.8 second(s) after the explosion?

(Multiple Choice)
4.8/5
(39)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=x2+5x at (4,20)f ( x ) = x ^ { 2 } + 5 x \text { at } ( 4,20 )

(Multiple Choice)
4.8/5
(30)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -What is the range of g? A) all real numbers B)  \{ y \mid 2 \leq y \leq 4 \}  C)  \{ y \mid - 2 \leq y \leq 4 \}  D)  \{ y \mid - 2 \leq y \leq 5 \} -What is the range of g? A) all real numbers B) {y2y4}\{ y \mid 2 \leq y \leq 4 \} C) {y2y4}\{ y \mid - 2 \leq y \leq 4 \} D) {y2y5}\{ y \mid - 2 \leq y \leq 5 \}

(Multiple Choice)
4.9/5
(41)

Find the one-sided limit. - limx4+16x24x\lim _ { x \rightarrow 4 ^ { + } } \frac { 16 - x ^ { 2 } } { 4 - x }

(Multiple Choice)
4.8/5
(30)

Find the limit algebraically. - limx13x2+7x23x24x+2\lim _ { x \rightarrow 1 } \frac { 3 x ^ { 2 } + 7 x - 2 } { 3 x ^ { 2 } - 4 x + 2 }

(Multiple Choice)
4.9/5
(29)

Use the graph of y = g(x) to answer the question. Use the graph of y = g(x) to answer the question.   -Find f(-4). -Find f(-4).

(Multiple Choice)
4.8/5
(30)

Determine whether f is continuous at c. - f(x)=x236x6;c=6f ( x ) = \frac { x ^ { 2 } - 36 } { x - 6 } ; \quad c = - 6

(Multiple Choice)
4.8/5
(38)

Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=2x2+x+3 from x=0 to x=6;n=6f ( x ) = 2 x ^ { 2 } + x + 3 \text { from } x = 0 \text { to } x = 6 ; n = 6

(Multiple Choice)
4.9/5
(36)

Use the graph shown to determine if the limit exists. If it does, find its value. - limx8f(x)\lim _ { x \rightarrow 8 } f ( x )  Use the graph shown to determine if the limit exists. If it does, find its value. - \lim _ { x \rightarrow 8 } f ( x )

(Multiple Choice)
4.8/5
(31)

Find the limit algebraically. - limx0(x2)\lim _ { x \rightarrow - 0 } ( \sqrt { x } - 2 )

(Multiple Choice)
4.9/5
(43)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=x2+11x15 at (1,3)f ( x ) = x ^ { 2 } + 11 x - 15 \text { at } ( 1 , - 3 )

(Multiple Choice)
4.9/5
(30)

Determine whether f is continuous at c. - f(x)=x2(x+9)(x+8);c=9f ( x ) = \frac { x - 2 } { ( x + 9 ) ( x + 8 ) } ; c = - 9

(Multiple Choice)
5.0/5
(36)

Find the limit algebraically. - limx1(x22)3\lim _ { x \rightarrow 1 } \left( x ^ { 2 } - 2 \right) ^ { 3 }

(Multiple Choice)
4.8/5
(39)

Determine whether f is continuous at c. - f(x)={2x+9,x<17x+14,x>1;c=1f ( x ) = \left\{ \begin{array} { r l } - 2 x + 9 , & x < 1 \\- 7 x + 14 , & x > 1\end{array} ; \quad c = 1 \right.

(Multiple Choice)
4.8/5
(40)

Use the grid to graph the function. Find the limit, if it exists - limxπ/2f(x),f(x)=sinx2\lim _ { x \rightarrowπ / 2 } f ( x ) , f ( x ) = \sin x - 2

(Multiple Choice)
4.8/5
(30)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)=4tanxf ( x ) = 4 \tan x

(Multiple Choice)
4.9/5
(34)

Determine whether f is continuous at c. - f(x)=3x47x3+x2;c=2f ( x ) = 3 x ^ { 4 } - 7 x ^ { 3 } + x - 2 ; \quad c = 2

(Multiple Choice)
4.7/5
(29)

Solve the problem. -Given the function f defined over the interval [a, b], graph the function indicating the area A under f from a to b. Then express the area A as an integral. f(x)=x2+3,[4,2]f ( x ) = x ^ { 2 } + 3 , \quad [ - 4,2 ]  Solve the problem. -Given the function f defined over the interval [a, b], graph the function indicating the area A under f from a to b. Then express the area A as an integral.  f ( x ) = x ^ { 2 } + 3 , \quad [ - 4,2 ]

(Essay)
4.8/5
(30)

Choose the one alternative that best completes the statement or answers the question. Find the slope of the tangent line to the graph at the given point. - f(x)=5x2+x at (4,76)f ( x ) = 5 x ^ { 2 } + x \text { at } ( - 4,76 )

(Multiple Choice)
4.7/5
(36)
Showing 61 - 80 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)