Exam 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine whether f is continuous at c. - f(x)=x+6(x2)(x3);c=6f ( x ) = \frac { x + 6 } { ( x - 2 ) ( x - 3 ) } ; c = - 6

(Multiple Choice)
4.9/5
(35)

Determine whether f is continuous at c. - f(x)=8x2+3x;c=8f ( x ) = \frac { 8 } { x ^ { 2 } + 3 x } ; \quad c = - 8

(Multiple Choice)
4.9/5
(31)

Use the graph of y = g(x) to answer the question.  Use the graph of y = g(x) to answer the question.   -What is the domain of g? A)  \{ x \mid - 4 \leq x < 5 \}  B)  \{ x \mid - 4 \leq x < 4  or  4 < x \leq 5 \}  C)  \{ x \mid - 4 < x < 5 \}  D)  \{ x \mid - 4 < x < - 1  or  - 1 < x < 2  or  2 < x \leq 5 \} -What is the domain of g? A) {x4x<5}\{ x \mid - 4 \leq x < 5 \} B) {x4x<4\{ x \mid - 4 \leq x < 4 or 4<x5}4 < x \leq 5 \} C) {x4<x<5}\{ x \mid - 4 < x < 5 \} D) {x4<x<1\{ x \mid - 4 < x < - 1 or 1<x<2- 1 < x < 2 or 2<x5}2 < x \leq 5 \}

(Multiple Choice)
4.8/5
(31)

Use the TABLE feature of a graphing utility to find the limit. - limx0x2cosx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } } { \cos x }

(Multiple Choice)
4.8/5
(24)

Find the limit algebraically. - limx9(63x2)\lim _ { x \rightarrow9 } \left( 6 - 3 x ^ { 2 } \right)

(Multiple Choice)
4.9/5
(29)

Find the limit algebraically. - limx12x74x+5\lim _ { x \rightarrow 1 } \frac { 2 x - 7 } { 4 x + 5 }

(Multiple Choice)
4.8/5
(41)

Find the limit algebraically. - limx2x24x+2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 4 } { x + 2 }

(Multiple Choice)
4.9/5
(31)

Find the limit as x approaches c of the average rate of change of the function from c to x. -c = 9; f(x)=x3+10f ( x ) = \frac { x } { 3 } + 10

(Multiple Choice)
4.7/5
(32)

Find the limit as x approaches c of the average rate of change of the function from c to x. -c = 4; f(x)=3xf ( x ) = \frac { 3 } { x } A) 316- \frac { 3 } { 16 } B) 12- 12 C) 34\frac { 3 } { 4 } D) Does not exist

(Multiple Choice)
4.7/5
(40)

Find the derivative of the function at the given value of x. - f(x)=x3+4x;x=2f ( x ) = x ^ { 3 } + 4 x ; x = - 2

(Multiple Choice)
4.8/5
(30)

Find the one-sided limit. - limx2+(x23x3)\lim _ { x \rightarrow 2 ^ { + } } \left( x ^ { 2 } - 3 x - 3 \right)

(Multiple Choice)
4.8/5
(32)

Find the limit algebraically. - limx1x3+5x2+3x9x1\lim _ { x \rightarrow 1 } \frac { x ^ { 3 } + 5 x ^ { 2 } + 3 x - 9 } { x - 1 }

(Multiple Choice)
4.7/5
(38)

Find the one-sided limit. - limx3x29x3\lim _ { x \rightarrow3 ^ { - } } \frac { x ^ { 2 } - 9 } { x - 3 }

(Multiple Choice)
4.8/5
(29)

Solve the problem. -(a) What area does the integral 0π/2sinxcosxdx\int _ { 0 } ^ { \pi / 2 } \sin x \cos x \mathrm { dx } represent? (b) Use a graphing utility to approximate the area to three decimal places.

(Short Answer)
4.9/5
(28)

Solve the problem. -A foul tip of a baseball is hit straight upward from a height of 4 feet with an initial velocity of 112 feet per second. The function s(t)=16t2+112t+4s ( t ) = - 16 t ^ { 2 } + 112 t + 4 4 describes the ball's height above the ground, s(t), in feet, t seconds After it was hit. The ball reaches its maximum height above the ground when the instantaneous speed reaches Zero. After how many seconds does the ball reach its maximum height? A) 112 B) 332\frac { 3 } { 32 } C) 72\frac { 7 } { 2 } D) 7

(Multiple Choice)
4.8/5
(44)

Approximate the area under the curve and above the x-axis using n rectangles. Let the height of each rectangle be given by the value of the function at the right side of the rectangle. - f(x)=3x22 from x=1 to x=5;n=4f ( x ) = 3 x ^ { 2 } - 2 \text { from } x = 1 \text { to } x = 5 ; n = 4

(Multiple Choice)
5.0/5
(28)

Find the numbers at which f is continuous. At which numbers is f discontinuous? - f(x)=x+5x211x+24f ( x ) = \frac { x + 5 } { x ^ { 2 } - 11 x + 24 }

(Multiple Choice)
4.7/5
(36)

Find the limit algebraically. - limx1(3x219)2\lim _ { x \rightarrow 1 } \left( 3 x ^ { 2 } - 19 \right) ^ { 2 }

(Multiple Choice)
4.9/5
(31)

Solve the problem. -Provide a graph that illustrates the area represented by the integral. 23x2dx\int _ { 2 } ^ { 3 } x ^ { 2 } d x  Solve the problem. -Provide a graph that illustrates the area represented by the integral.  \int _ { 2 } ^ { 3 } x ^ { 2 } d x     A)   B)   C)   D)    A)  Solve the problem. -Provide a graph that illustrates the area represented by the integral.  \int _ { 2 } ^ { 3 } x ^ { 2 } d x     A)   B)   C)   D)    B)  Solve the problem. -Provide a graph that illustrates the area represented by the integral.  \int _ { 2 } ^ { 3 } x ^ { 2 } d x     A)   B)   C)   D)    C)  Solve the problem. -Provide a graph that illustrates the area represented by the integral.  \int _ { 2 } ^ { 3 } x ^ { 2 } d x     A)   B)   C)   D)    D)  Solve the problem. -Provide a graph that illustrates the area represented by the integral.  \int _ { 2 } ^ { 3 } x ^ { 2 } d x     A)   B)   C)   D)

(Multiple Choice)
4.7/5
(35)

Determine whether f is continuous at c. - f(x)={2x+3,x<11,x=1;c=14x1,x>1f ( x ) = \left\{ \begin{aligned}- 2 x + 3 , & x < 1 \\1 , & x = 1 ; \quad c = 1 \\4 x - 1 , & x > 1\end{aligned} \right.

(Multiple Choice)
4.8/5
(33)
Showing 81 - 100 of 145
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)