Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -Use the Binomial Theorem to approximate (0.98)6=(12(102))6( 0.98 ) ^ { 6 } = \left( 1 - 2 \left( 10 ^ { - 2 } \right) \right) ^ { 6 } to 5 decimal places.

Free
(Short Answer)
4.8/5
(30)
Correct Answer:
Verified

0.88584

Find the sum of the sequence. - k=14(k)\sum _ { k = 1 } ^ { 4 } ( - k )

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

D

Write out the first five terms of the sequence. - {(2n1)!n!}\left\{ \frac { ( 2 n - 1 ) ! } { n ! } \right\}

Free
(Multiple Choice)
4.9/5
(43)
Correct Answer:
Verified

D

Find the nth term of the geometric sequence. -5, -15, 45, -135, 405 A) an=5(3)n1a _ { n } = 5 \cdot ( - 3 ) ^ { n - 1 } B) an=5(3)na _ { n } = 5 \cdot ( - 3 ) n C) an=a13na _ { n } = a _ { 1 } - 3 ^ { n } D) an=5(3)na _ { n } = 5 \cdot ( - 3 ) ^ { n }

(Multiple Choice)
4.9/5
(35)

Find the indicated term using the given information. - a45=1475,a13=515;a3\mathrm { a } _ { 45 } = - \frac { 147 } { 5 } , \mathrm { a } _ { 13 } = - \frac { 51 } { 5 } ; \mathrm { a } _ { 3 }

(Multiple Choice)
4.9/5
(38)

Find the sum of the arithmetic sequence. -{-6n + 2}, n = 36

(Multiple Choice)
4.7/5
(33)

If the sequence is geometric, find the common ratio. If the sequence is not geometric, say so. -4, -12, 36, -108, 324

(Multiple Choice)
4.7/5
(33)

Find the sum of the sequence. - k=25(1)k+1(k9)2\sum _ { k = 2 } ^ { 5 } ( - 1 ) ^ { k + 1 } ( k - 9 ) ^ { 2 }

(Multiple Choice)
4.9/5
(26)

Use a graphing utility to find the sum of the geometric sequence. Round answer to two decimal places, if necessary. - k=153(4)k\sum _ { k = 1 } ^ { 5 } 3 ( - 4 ) ^ { k }

(Multiple Choice)
4.9/5
(36)

The given pattern continues. Write down the nth term of the sequence suggested by the pattern. -0, 2, 6, 12, 20, ... A) an=4n6a _ { n } = 4 n - 6 B) an=2n11a _ { n } = 2 ^ { n - 1 } - 1 C) an=n2na _ { n } = n ^ { 2 } - n D) an=2n2a _ { n } = 2 n - 2

(Multiple Choice)
4.8/5
(38)

The sequence is defined recursively. Write the first four terms. - a1=3 and an=2an1 for n2a _ { 1 } = 3 \text { and } a _ { n } = 2 a _ { n - 1 } \text { for } n \geq 2

(Multiple Choice)
4.8/5
(29)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - (35)n=35n\left( 3 ^ { 5 } \right) ^ { n } = 3 ^ { 5 n }

(Essay)
4.9/5
(25)

Write out the first five terms of the sequence. - {4n2}\left\{ \frac { 4 } { n ^ { 2 } } \right\}

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Suppose you just received a job offer with a starting salary of $37,000 per year and a guaranteed raise of $1500 per year. How many years will it be before you've made a total (or aggregate) salary of $1,025,000?

(Short Answer)
4.9/5
(40)

Write out the sum. Do not evaluate. - k=16(5k3)\sum _ { k = 1 } ^ { 6 } ( 5 k - 3 )

(Multiple Choice)
4.8/5
(33)

Solve the problem. -For the geometric sequence 2, 1, 2,1,12,14,, find an2,1 , \frac { 1 } { 2 } , \frac { 1 } { 4 } , \ldots , \text { find } a _ { n } . A) an=21na _ { n } = 2 ^ { 1 - n } B) an=(12)1na _ { n } = \left( \frac { 1 } { 2 } \right) ^ { 1 - n } C) an=2n2a _ { n } = 2 ^ { n - 2 } D) an=(12)n2a _ { n } = \left( \frac { 1 } { 2 } \right) ^ { n - 2 }

(Multiple Choice)
4.8/5
(36)

Expand the expression using the Binomial Theorem. - (ws)6( w - s ) ^ { 6 }

(Multiple Choice)
5.0/5
(37)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 11+21+31++n=n(n+1)21 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 + \ldots + n = \frac { n ( n + 1 ) } { 2 }

(Essay)
4.9/5
(26)

Find the sum. -2, -4, 8, -16, 32

(Multiple Choice)
4.9/5
(33)

Determine whether the sequence is arithmetic. -5, -15, 45, -135, 405, ...

(Multiple Choice)
4.8/5
(31)
Showing 1 - 20 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)