Exam 1: Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - (4,1)( - 4,1 )  The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - ( - 4,1 )

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

C

The graph of a function f is given. Use the graph to answer the question. -Find the numbers, if any, at which f has a local maximum. What are the local maxima?  The graph of a function f is given. Use the graph to answer the question. -Find the numbers, if any, at which f has a local maximum. What are the local maxima?   A)  f  has a local maximum at  x = - \pi  and  \pi ; the local maximum is 2 B) f has no local maximum C)  \mathrm { f }  has a local maximum at  x = 0 ; the local maximum is  - 2  D)  \mathrm { f }  has a local maximum at  - \pi ; the local maximum is 2 A) ff has a local maximum at x=πx = - \pi and π\pi ; the local maximum is 2 B) f has no local maximum C) f\mathrm { f } has a local maximum at x=0x = 0 ; the local maximum is 2- 2 D) f\mathrm { f } has a local maximum at π- \pi ; the local maximum is 2

Free
(Multiple Choice)
4.8/5
(37)
Correct Answer:
Verified

A

Find the value for the function. -  Find f(9) when f(x)=x6\text { Find } f(-9) \text { when } f(x)=|x|-6

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

D

The graph of a piecewise-defined function is given. Write a definition for the function. - The graph of a piecewise-defined function is given. Write a definition for the function. -  A)  f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.  B)  f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x - \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right.  C)  f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x & \text { if } 3 < x \leq 5 \end{array} \right.  D)  f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + 2 & \text { if } 3 < x \leq 5 \end{array} \right. A) f(x)={x+1 if 0x312x+12 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right. B) f(x)={x+1 if 0x312x12 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x - \frac { 1 } { 2 } & \text { if } 3 < x \leq 5 \end{array} \right. C) f(x)={x+1 if 0x312x if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x & \text { if } 3 < x \leq 5 \end{array} \right. D) f(x)={x+1 if 0x312x+2 if 3<x5f ( x ) = \left\{ \begin{array} { l l } x + 1 & \text { if } 0 \leq x \leq 3 \\ \frac { 1 } { 2 } x + 2 & \text { if } 3 < x \leq 5 \end{array} \right.

(Multiple Choice)
4.9/5
(43)

Match the correct function to the graph. - Match the correct function to the graph. -  A)  y = x - 1  B)  y = \sqrt { x }  C)  y = \sqrt { x + 1 }  D)  y = \sqrt { x - 1 } A) y=x1y = x - 1 B) y=xy = \sqrt { x } C) y=x+1y = \sqrt { x + 1 } D) y=x1y = \sqrt { x - 1 }

(Multiple Choice)
4.9/5
(38)

The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - (2,1)( - 2 , - 1 )  The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - ( - 2 , - 1 )

(Multiple Choice)
4.7/5
(32)

Find the domain of the function. - f(x)=24xf ( x ) = \sqrt { 24 - x }

(Multiple Choice)
4.8/5
(38)

Determine whether the relation represents a function. If it is a function, state the domain and range. - {(2.44,3.24),(2.444,3.2),(73,0),(2.33,2)}\left\{(2.44,3.24),(2.444,-3.2),\left(\frac{7}{3}, 0\right),(2.33,-2)\right\}

(Multiple Choice)
4.7/5
(36)

Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=xf(x)=|-x|  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=|-x|      A)    B)    C)    D)    A)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=|-x|      A)    B)    C)    D)    B)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=|-x|      A)    B)    C)    D)    C)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=|-x|      A)    B)    C)    D)    D)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=|-x|      A)    B)    C)    D)

(Multiple Choice)
4.9/5
(40)

Find and simplify the difference quotient of f, f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } h0\mathbf { h } \neq 0 , for the function. - Find and simplify the difference quotient of f,  \frac { f ( x + h ) - f ( x ) } { h }   \mathbf { h } \neq 0  , for the function. -  A) function domain: all real numbers range:   \{y \mid y \leq-2   or   y \geq 2\}   intercepts:   (-2,0),(2,0)   symmetry:   y  -axis    \[\begin{array} { l l }   B) function domain: \( \{x \mid-2 \leq x \leq 2\} \) range: all real numbers intercepts: \( (-2,0),(2,0) \) symmetry: \( \mathrm{x} \)-axis, \( y \)-axis  C) function domain: \( \{x \mid x \leq-2 \) or \( x \geq 2\} \) range: all real numbers intercepts: \( (-2,0),(2,0) \) symmetry: \( \mathrm{x} \)-axis, \( \mathrm{y} \)-axis, origirn  D) \(\text { not a function }\)   A) function domain: all real numbers range: \( \{y \mid y \leq-2 \) or \( y \geq 2\} \) intercepts: \( (-2,0),(2,0) \) symmetry: \( y \)-axis\[\begin{array} { l l } B) function domain: \( \{x \mid-2 \leq x \leq 2\} \) range: all real numbers intercepts: \( (-2,0),(2,0) \) symmetry: \( \mathrm{x} \)-axis, \( y \)-axis C) function domain: \( \{x \mid x \leq-2 \) or \( x \geq 2\} \) range: all real numbers intercepts: \( (-2,0),(2,0) \) symmetry: \( \mathrm{x} \)-axis, \( \mathrm{y} \)-axis, origirn D) \(\text { not a function }\)

(Multiple Choice)
4.8/5
(25)

Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7x2f(x)=7 x^{2}  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7 x^{2}     A)   B)   C)   D)   A)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7 x^{2}     A)   B)   C)   D)   B)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7 x^{2}     A)   B)   C)   D)   C)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7 x^{2}     A)   B)   C)   D)   D)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=7 x^{2}     A)   B)   C)   D)

(Multiple Choice)
4.8/5
(40)

Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(x)2f(x)=(-x)^{2}  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(-x)^{2}     A)   B)   C)   D)    A)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(-x)^{2}     A)   B)   C)   D)    B)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(-x)^{2}     A)   B)   C)   D)    C)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(-x)^{2}     A)   B)   C)   D)    D)  Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=(-x)^{2}     A)   B)   C)   D)

(Multiple Choice)
4.7/5
(35)

The graph of a function f is given. Use the graph to answer the question. -Is f(3) positive or negative? The graph of a function f is given. Use the graph to answer the question. -Is f(3) positive or negative?

(Multiple Choice)
4.9/5
(33)

For the function, find the average rate of change of f from 1 to x: f(x)f(1)x1,x1\frac { f ( x ) - f ( 1 ) } { x - 1 } , x \neq 1 - f(x)=x22xf ( x ) = x ^ { 2 } - 2 x

(Multiple Choice)
4.9/5
(38)

The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - (0,3)( 0,3 )  The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval. - ( 0,3 )

(Multiple Choice)
4.8/5
(33)

The graph of a piecewise-defined function is given. Write a definition for the function. - The graph of a piecewise-defined function is given. Write a definition for the function. -  A)  f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x - 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 \leq x \leq 3 \end{array} \right.  B)  f ( x ) = \left\{ \begin{array} { l l } \frac {3 } { 4} x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 < x \leq 3 \end{array} \right.   C)  f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x+ 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x+2 & \text { if } 0< x \leq 3 \end{array} \right.   D)   f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0< x \leq 3 \end{array} \right.   A) f(x)={43x4 if 3x023x if 0x3f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x - 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 \leq x \leq 3 \end{array} \right. B) f(x)={34x+4 if 3x023x if 0lt;x3f ( x ) = \left\{ \begin{array} { l l } \frac {3 } { 4} x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 &lt; x \leq 3 \end{array} \right. C) f(x)={43x+4 if 3x023x+2 if 0lt;x3f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x+ 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x+2 & \text { if } 0&lt; x \leq 3 \end{array} \right. D) f(x)={43x+4 if 3x023x if 0lt;x3f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0&lt; x \leq 3 \end{array} \right.

(Multiple Choice)
4.7/5
(32)

Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f(x)=1x6+6f ( x ) = \frac { 1 } { x - 6 } + 6  Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f ( x ) = \frac { 1 } { x - 6 } + 6     A)    B)    C)     D)    A)  Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f ( x ) = \frac { 1 } { x - 6 } + 6     A)    B)    C)     D)    B)  Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f ( x ) = \frac { 1 } { x - 6 } + 6     A)    B)    C)     D)    C)  Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f ( x ) = \frac { 1 } { x - 6 } + 6     A)    B)    C)     D)    D)  Choose the one alternative that best completes the statement or answers the question. Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting. - f ( x ) = \frac { 1 } { x - 6 } + 6     A)    B)    C)     D)

(Multiple Choice)
4.8/5
(42)

The graph of a function f is given. Use the graph to answer the question. -What are the x-intercepts? The graph of a function f is given. Use the graph to answer the question. -What are the x-intercepts?

(Multiple Choice)
4.8/5
(41)

The graph of a function f is given. Use the graph to answer the question. -For what numbers xx is f(x)<0f ( x ) < 0 ?  The graph of a function f is given. Use the graph to answer the question. -For what numbers  x  is  f ( x ) < 0  ?

(Multiple Choice)
4.8/5
(27)

Solve the problem. -Express the gross salary G of a person who earns $35 per hour as a function of the number x of hours worked. A) G(x)=35x2G ( x ) = 35 x ^ { 2 } B) G(x)=35xG ( x ) = \frac { 35 } { x } C) G(x)=35xG ( x ) = 35 x D) G(x)=35+x\mathrm { G } ( \mathrm { x } ) = 35 + \mathrm { x }

(Multiple Choice)
4.8/5
(32)
Showing 1 - 20 of 301
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)