Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Expand the expression using the Binomial Theorem. - (x3x)4\left( x - \frac { 3 } { \sqrt { x } } \right) ^ { 4 }

(Essay)
4.9/5
(35)

Use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of the sequence with the given first term, a1, and common ratio, r. -Find a12a _ { 12 } when a1=2,000,r=13a _ { 1 } = 2,000 , r = - \frac { 1 } { 3 } . A)20001594323A ) - \frac { 2000 } { 1594323 } B) 59893\frac { 5989 } { 3 } C) 2000531441\frac { 2000 } { 531441 } D) 2000177147- \frac { 2000 } { 177147 }

(Multiple Choice)
4.9/5
(29)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 3+8+13++(5n2)=n2(5n+1)3 + 8 + 13 + \ldots + ( 5 n - 2 ) = \frac { n } { 2 } ( 5 n + 1 )

(Essay)
4.8/5
(46)

Expand the expression using the Binomial Theorem. - (3x2y)3( 3 x - 2 y ) ^ { 3 }

(Multiple Choice)
4.9/5
(34)

Find the sum. - k=15(13)(4)k\sum _ { \mathrm { k } = 1 } ^ { 5 } \left( \frac { 1 } { 3 } \right) ( 4 ) ^ { \mathrm { k } }

(Multiple Choice)
4.9/5
(36)

Find the sum of the sequence. - k=116(2k+7)\sum _ { k = 1 } ^ { 16 } ( 2 k + 7 )

(Multiple Choice)
4.9/5
(30)

Find the sum. -4, 16, 64, 256, 1,024

(Multiple Choice)
5.0/5
(37)

Solve the problem. -For the geometric sequence 64, 16, 4, 1, ... , find ana _ { n } .

(Essay)
4.8/5
(39)

Find the nth term of the geometric sequence. -6, 18, 54, 162, 486 A) an=63na _ { n } = 6 \cdot 3 n B) an=a1+3na _ { n } = a _ { 1 } + 3 ^ { n } C) an=63na _ { n } = 6 \cdot 3 ^ { n } D) an=63n1a _ { n } = 6 \cdot 3 ^ { n - 1 }

(Multiple Choice)
4.8/5
(36)

Write out the sum. Do not evaluate. - k=14(k24k3)\sum _ { k = 1 } ^ { 4 } \left( k ^ { 2 } - 4 k - 3 \right)

(Multiple Choice)
4.8/5
(37)

Find the indicated term using the given information. -a = 4 , d = 4 ; a8

(Multiple Choice)
4.9/5
(45)

Write out the first five terms of the sequence. -{4(4n - 2)}

(Multiple Choice)
4.8/5
(39)

Solve. -The number of students in a school in year n is estimated by the model an=7n2+13n+81a _ { n } = 7 n ^ { 2 } + 13 n + 81 . About how many students are in the school in each of the first three years?

(Multiple Choice)
5.0/5
(37)

Find the sum of the arithmetic sequence. -1 + 2 + 3 + ... + 329

(Multiple Choice)
4.7/5
(32)

Find the indicated coefficient or term. -The 8 th term in the expansion of (x2y)13( x - 2 y ) 13

(Multiple Choice)
4.9/5
(30)

Determine whether the sequence is geometric. -3, 5, 7, 11, 13, ...

(Multiple Choice)
4.9/5
(41)

Evaluate the expression. - (95)\left( \begin{array} { l } 9 \\5\end{array} \right)

(Multiple Choice)
4.9/5
(38)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 12+23+34++n(n+1)=n(n+1)(n+2)31 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n ( n + 1 ) = \frac { n ( n + 1 ) ( n + 2 ) } { 3 }

(Essay)
4.8/5
(35)

Find the indicated coefficient or term. -The coefficient of x8x ^ { 8 } in the expansion of (x23)7\left( x ^ { 2 } - 3 \right) ^ { 7 }

(Multiple Choice)
4.7/5
(32)

Find the value of the annuity with the following characteristics. -Payments of $1000 are made at the end of each year for 15 years at 9% interest compounded annually

(Multiple Choice)
4.7/5
(35)
Showing 121 - 140 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)