Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the first term, the common difference, and give a recursive formula for the arithmetic sequence. -7th term is 45; 16th term is 117 A) a1=3,d=8,an=an18a _ { 1 } = - 3 , d = 8 , a _ { n } = a _ { n - 1 } - 8 B) a1=3,d=8,an=an1+8a _ { 1 } = - 3 , d = 8 , a _ { n } = a _ { n - 1 } + 8 C) a1=11,d=8,an=an18a _ { 1 } = - 11 , d = 8 , a _ { n } = a _ { n - 1 } - 8 D) a1=11,d=8,an=an1+8a _ { 1 } = - 11 , d = 8 , a _ { n } = a _ { n - 1 } + 8

(Multiple Choice)
4.8/5
(33)

Determine whether the sequence is geometric. -3, 6, 12, 24, 48, ...

(Multiple Choice)
4.9/5
(40)

Determine whether the infinite geometric series converges or diverges. If it converges, find its sum. - 41+144 - 1 + \frac { 1 } { 4 } - \cdots

(Multiple Choice)
4.8/5
(36)

Expand the expression using the Binomial Theorem. - (g2h)3( g - 2 h ) ^ { 3 }

(Essay)
4.9/5
(33)

Solve the problem. -Write 0.272727... as a fraction. (Find the sum of the repeating decimal.) A) 311\frac { 3 } { 11 } B) 611\frac { 6 } { 11 } C) 310\frac { 3 } { 10 } D) 137\frac { 1 } { 37 }

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Suppose that certain bacteria can double their size and divide every 30 minutes. Write a recursive sequence that describes this growth where each value of n represents a 30-minute interval. Let a1=490\mathrm { a } _ { 1 } = 490 represent the initial Number of bacteria present. A) an=2a1a _ { n } = 2 a _ { 1 } for all values of nn . B) a1=490;an=2an+1a _ { 1 } = 490 ; a _ { n } = 2 a _ { n + 1 } for n>1n > 1 . C) a1=490;an=2an1a _ { 1 } = 490 ; \quad a _ { n } = 2 a _ { n - 1 } for n>1.n > 1 . D) a1=490;an=12an1a _ { 1 } = 490 ; \quad a _ { n } = \frac { 1 } { 2 } a _ { n - 1 } for n>1n > 1 .

(Multiple Choice)
4.8/5
(35)

The sequence is defined recursively. Write the first four terms. - a1=6;an=6an1a _ { 1 } = \sqrt { 6 } ; a _ { n } = \sqrt { 6 a _ { n - 1 } }

(Multiple Choice)
4.9/5
(26)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 12+42+72++(3n2)2=n(6n23n1)21 ^ { 2 } + 4 ^ { 2 } + 7 ^ { 2 } + \ldots + ( 3 n - 2 ) ^ { 2 } = \frac { n \left( 6 n ^ { 2 } - 3 n - 1 \right) } { 2 }

(Essay)
4.8/5
(35)

Find the sum of the arithmetic sequence. -6 + 12 + 18 + ... + 876

(Multiple Choice)
4.8/5
(36)

Find the sum of the arithmetic sequence. -{2n - 2}, n = 43

(Multiple Choice)
4.7/5
(44)

Determine whether the sequence is arithmetic. -4, 12, 36, 108, 972, ...

(Multiple Choice)
4.7/5
(43)

Expand the expression using the Binomial Theorem. - (2x+1)5( 2 x + 1 ) ^ { 5 }

(Multiple Choice)
4.9/5
(43)

Find the indicated coefficient or term. -The coefficient of 1x\frac { 1 } { x } in the expansion of (2x+1x)3\left( 2 x + \frac { 1 } { x } \right) ^ { 3 }

(Short Answer)
4.9/5
(29)

Solve the problem. -A new piece of equipment cost a company $54,000. Each year, for tax purposes, the company depreciates the value by 25%.What value should the company give the equipment after 8 years?

(Multiple Choice)
4.9/5
(33)

Determine whether the given sequence is arithmetic, geometric, or neither. If arithmetic, find the common difference. If geometric, find the common ratio. - {(43)n}\left\{ \left( \frac { 4 } { 3 } \right) ^ { n } \right\}

(Multiple Choice)
5.0/5
(29)

Find the indicated term of the sequence. -The twentieth term of the arithmetic sequence 11 , 7 , 3 , ...

(Multiple Choice)
4.9/5
(28)

Find the indicated coefficient or term. -The 10 th term in the expansion of (3x2y)13( 3 x - 2 y ) ^ { 13 }

(Multiple Choice)
4.8/5
(40)

Solve the problem. -A pendulum bob swings through an arc 40 inches long on its first swing. Each swing thereafter, it swings only 63% as far as on the previous swing. What is the length of the arc after 9 swings? Round your answer to two Decimal places, if necessary.

(Multiple Choice)
4.8/5
(41)

Determine whether the sequence is arithmetic. -2, 4, 6, 10, 12, ...

(Multiple Choice)
4.8/5
(44)

Solve the problem. -Find the 10th term of the geometric sequence 13,1,3,\frac { 1 } { 3 } , 1,3 , \ldots

(Multiple Choice)
4.8/5
(34)
Showing 81 - 100 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)