Exam 11: Sequences; Induction; the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the first term, the common difference, and give a recursive formula for the arithmetic sequence. -6 th term is 17;15- 17 ; 15 th term is 53- 53

(Multiple Choice)
4.8/5
(25)

Solve the problem. -After being struck with a hammer, a gong vibrates 54 vibrations in the first second and in each second thereafter makes 67\frac { 6 } { 7 } as many vibrations as in the previous second. Find how many vibrations the gong makes before it Stops vibrating.

(Multiple Choice)
4.8/5
(39)

Find the sum of the arithmetic sequence. -{-6n - 1}, n = 38

(Multiple Choice)
4.7/5
(30)

Find the sum of the arithmetic sequence. -(-6) + (-1) + 4 + 9 + ... + 39

(Multiple Choice)
4.9/5
(34)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - 3+317+3(17)2++3(17)n1=3(1(17)n)1173 + 3 \cdot \frac { 1 } { 7 } + 3 \cdot \left( \frac { 1 } { 7 } \right) ^ { 2 } + \ldots + 3 \cdot \left( \frac { 1 } { 7 } \right) ^ { n - 1 } = \frac { 3 \left( 1 - \left( \frac { 1 } { 7 } \right) ^ { n } \right) } { 1 - \frac { 1 } { 7 } }

(Essay)
4.9/5
(36)

Find the sum of the sequence. - k=1413k\sum _ { k = 1 } ^ { 4 } \frac { 1 } { 3 k }

(Multiple Choice)
4.8/5
(38)

Use the Principle of Mathematical Induction to show that the statement is true for all natural numbers n. - n2n+2 is divisible by 2n ^ { 2 } - n + 2 \text { is divisible by } 2

(Essay)
4.9/5
(36)

The sequence is defined recursively. Write the first four terms. - a1=4 and an=4an14 for n2a _ { 1 } = 4 \text { and } a _ { n } = 4 a _ { n - 1 } - 4 \text { for } n \geq 2

(Multiple Choice)
4.7/5
(36)

Express the repeating decimal as a fraction in lowest terms. - 0.77=77100+7710,000+771,000,000+0 . \overline { 77 } = \frac { 77 } { 100 } + \frac { 77 } { 10,000 } + \frac { 77 } { 1,000,000 } + \ldots

(Multiple Choice)
4.8/5
(33)

Expand the expression using the Binomial Theorem. - (5x+2)4( 5 x + 2 ) ^ { 4 }

(Multiple Choice)
4.8/5
(24)

Determine whether the sequence is geometric. -4, 12, 36, 108, 324, ...

(Multiple Choice)
4.9/5
(37)

Determine whether the infinite geometric series converges or diverges. If it converges, find its sum. - k=12(0.9)k1\sum _ { k = 1 } ^ { \infty } - 2 ( - 0.9 ) ^ { \mathrm { k } - 1 }

(Multiple Choice)
4.8/5
(31)

Find the sum of the sequence. - k=25(4k5)\sum _ { k = 2 } ^ { 5 } ( 4 k - 5 )

(Multiple Choice)
4.8/5
(31)

Evaluate the expression. - (2633)\left( \begin{array} { c } 263 \\ 3 \end{array} \right)

(Multiple Choice)
4.8/5
(33)

Solve. -The number of students in a school in year n is estimated by the model an=5n2+14n+81a _ { n } = 5 n ^ { 2 } + 14 n + 81 . About how many students are in the school in each of the first three years?

(Multiple Choice)
5.0/5
(30)

Find the sum of the sequence. - k=15(k+1)\sum _ { k = 1 } ^ { 5 } ( k + 1 )

(Multiple Choice)
4.7/5
(32)

Find the fifth term and the nth term of the geometric sequence whose initial term, a, and common ratio, r, are given. - a=2;r=3a = 2 ; r = 3

(Multiple Choice)
4.7/5
(37)

Use the formula for the general term (the nth term) of a geometric sequence to find the indicated term of the sequence with the given first term, a1, and common ratio, r. -Find ag when a1=4,000,r=13\mathrm { a } _ { 1 } = 4,000 , \mathrm { r } = \frac { 1 } { 3 } .

(Multiple Choice)
4.8/5
(32)

Find the indicated term using the given information. - a10=35,a18=75;a1a 10 = 35 , a 18 = 75 ; a 1

(Multiple Choice)
4.7/5
(39)

Determine whether the infinite geometric series converges or diverges. If it converges, find its sum. - k=14(32)k1\sum _ { k = 1 } ^ { \infty } 4 \left( \frac { 3 } { 2 } \right) ^ { k - 1 }

(Multiple Choice)
4.8/5
(36)
Showing 101 - 120 of 238
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)