Exam 10: Rational Exponents, Radicals, and Complex Numbers

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve. - 4x+534=0\sqrt [ 3 ] { 4 x + 5 } - 4 = 0

(Multiple Choice)
4.9/5
(38)

Use the product rule to multiply. Assume all variables represent positive real numbers. - x3y2\sqrt { \frac { x } { 3 } } \cdot \sqrt { \frac { y } { 2 } }

(Multiple Choice)
4.9/5
(33)

Use radical notation to write the expression. Simplify if possible. - 644/364 ^ { 4 / 3 }

(Multiple Choice)
4.8/5
(39)

Rationalize the numerator and simplify. Assume all variables represent positive real numbers. - 175z\frac { \sqrt { 17 } } { 5 \mathrm { z } }

(Multiple Choice)
4.8/5
(41)

Solve. - x+33+4=0\sqrt [ 3 ] { x + 3 } + 4 = 0

(Multiple Choice)
4.9/5
(41)

Use radical notation to write the expression. Simplify if possible. - (864)2/3\left( \frac { 8 } { 64 } \right) ^ { 2 / 3 }

(Multiple Choice)
4.9/5
(33)

Find the cube root. - x12125y63\sqrt [ 3 ] { \frac { x ^ { 12 } } { 125 y ^ { 6 } } }

(Multiple Choice)
4.8/5
(34)

Perform the indicated operation. Write the result in the form a + bi. - 8+7i5+6i\frac { 8 + 7 i } { 5 + 6 i }

(Multiple Choice)
4.9/5
(31)

Perform the indicated operations. Assume that all variables represent positive numbers. - 12x38108x3\sqrt { 12 x ^ { 3 } } - 8 \sqrt { 108 x ^ { 3 } }

(Multiple Choice)
4.8/5
(37)

Fill in the blank with one of the words or phrases listed below. index rationalizing conjugate principal square rootcube root midpoint complex numberlike radicals radicand imaginary unit distance -The ----------written i, is the number whose square is -1.

(Multiple Choice)
4.8/5
(34)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 1850\sqrt { 18 } \cdot \sqrt { 50 }

(Multiple Choice)
4.9/5
(34)

Rationalize the numerator and simplify. Assume all variables represent positive real numbers. - 72\sqrt { \frac { 7 } { 2 } }

(Multiple Choice)
4.8/5
(33)

Multiply, and then simplify if possible. Assume all variables represent positive real numbers. - (11x52)(11x55)( \sqrt { 11 x } - 5 \sqrt { 2 } ) ( \sqrt { 11 x } - 5 \sqrt { 5 } )

(Multiple Choice)
4.9/5
(30)

Add or subtract. Assume all variables represent positive real numbers. - 1823354318 \sqrt [ 3 ] { 2 } - 3 \sqrt [ 3 ] { 54 }

(Multiple Choice)
4.9/5
(37)

Use radical notation to write the expression. Simplify if possible. - 2561/4256 ^ { 1 / 4 }

(Multiple Choice)
4.8/5
(35)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 8m3327m33\sqrt [ 3 ] { 8 m ^ { 3 } } \cdot \sqrt [ 3 ] { 27 m ^ { 3 } }

(Multiple Choice)
4.8/5
(35)

Solve. - x23x+54=x+3\sqrt { x ^ { 2 } - 3 x + 54 } = x + 3

(Multiple Choice)
4.9/5
(30)

Use the quotient rule to divide and simplify. - 54x116x\frac { \sqrt { 54 x ^ { 11 } } } { \sqrt { 6 x } }

(Multiple Choice)
4.8/5
(29)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 155x\frac { 15 } { \sqrt { 5 x } }

(Multiple Choice)
4.9/5
(39)

Perform the indicated operation and simplify. Write the result in the form a a+bia + bi - 9+2i46i\frac { 9 + 2 i } { 4 - 6 i }

(Multiple Choice)
4.7/5
(37)
Showing 181 - 200 of 379
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)