Exam 10: Rational Exponents, Radicals, and Complex Numbers

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Multiply or divide. - 7010\frac { \sqrt { - 70 } } { \sqrt { - 10 } }

(Multiple Choice)
4.9/5
(36)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 787+8\frac { \sqrt { 7 } - \sqrt { 8 } } { \sqrt { 7 } + \sqrt { 8 } }

(Multiple Choice)
4.9/5
(48)

Simplify the radical expression. Assume that all variables represent positive real numbers. - 6\sqrt { 6 }

(Multiple Choice)
4.9/5
(38)

Find the square root. Assume that all variables represent positive real numbers. - 0.09\sqrt { 0.09 }

(Multiple Choice)
4.8/5
(33)

Write in terms of i. - 1600\sqrt { - 1600 }

(Multiple Choice)
4.8/5
(38)

Factor the given factor from the expression. - x1/3;x13/3+x1/3x ^ { 1 / 3 } ; x ^ { 13 / 3 } + x ^ { 1 / 3 }

(Multiple Choice)
4.9/5
(54)

Factor the given factor from the expression. - s5/7;15 s1/73 s5/7\mathrm { s } ^ { - 5 / 7 } ; 15 \mathrm {~s} ^ { 1 / 7 } - 3 \mathrm {~s} ^ { - 5 / 7 }

(Multiple Choice)
4.9/5
(35)

Solve the problem. -The maximum distance dd in kilometers that you can see from a height hh in meters is given by the formula d=3.5h\mathrm { d } = 3.5 \sqrt { \mathrm { h } } . How high above the ground must you be to see 35 kilometers. (Round to the nearest tenth of a meter.)

(Multiple Choice)
4.8/5
(39)

Multiply, and then simplify if possible. Assume all variables represent positive real numbers. - (93+3)(331)( \sqrt [ 3 ] { 9 } + 3 ) ( \sqrt [ 3 ] { 3 } - 1 )

(Multiple Choice)
4.9/5
(34)

Fill in the blank with one of the words or phrases listed below. index rationalizing conjugate principal square rootcube root midpoint complex numberlike radicals radicand imaginary unit distance -In the natation  Fill in the blank with one of the words or phrases listed below.  \begin{array} { l l l }  \text { index rationalizing } & \text { conjugate } & \text { principal square rootcube root midpoint } \\ \text { complex numberlike radicals } & \text { radicand } & \text { imaginary unit } \quad \text { distance } \end{array}  -In the natation   n is called the and a is called the --------------- n is called the and a is called the ---------------

(Multiple Choice)
4.8/5
(40)

Use rational exponents to simplify the following. - (x+7)416\sqrt [ 16 ] { ( x + 7 ) ^ { 4 } }

(Multiple Choice)
4.9/5
(31)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 3x33x5\sqrt { 3 x ^ { 3 } } \cdot \sqrt { 3 x ^ { 5 } }

(Multiple Choice)
4.9/5
(40)

Add or subtract. Assume all variables represent positive real numbers. - 112+448\sqrt { 112 } + \sqrt { 448 }

(Multiple Choice)
4.7/5
(33)

Solve. - 3x+5+4=9\sqrt { 3 x + 5 } + 4 = 9

(Multiple Choice)
4.8/5
(47)

Find the midpoint of the line segment whose endpoints are given. - (8,4),(9,5)( - 8 , - 4 ) , ( 9 , - 5 )

(Multiple Choice)
4.7/5
(39)

Evaluate. -If f(x)=2x1f ( x ) = \sqrt { 2 x - 1 } , find the value of f(11)f ( 11 ) .

(Multiple Choice)
4.9/5
(38)

Solve. - 5x+1+8=0\sqrt { 5 x + 1 } + 8 = 0

(Multiple Choice)
4.8/5
(40)

Solve. -Find the area of the trapezoid. Simplify if possible. Solve. -Find the area of the trapezoid. Simplify if possible.

(Multiple Choice)
4.8/5
(38)

Simplify the radical expression. Assume that all variables represent positive real numbers. - 63x117x\frac { \sqrt { 63 x ^ { 11 } } } { \sqrt { 7 x } }

(Multiple Choice)
4.9/5
(40)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 1642564\sqrt [ 4 ] { 16 } \cdot \sqrt [ 4 ] { 256 }

(Multiple Choice)
4.8/5
(28)
Showing 261 - 280 of 379
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)