Exam 10: Rational Exponents, Radicals, and Complex Numbers

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Multiply, and then simplify if possible. Assume all variables represent positive real numbers. - (65+3)(65+8)( 6 \sqrt { 5 } + 3 ) ( 6 \sqrt { 5 } + 8 )

(Multiple Choice)
4.9/5
(33)

Use rational exponents to write as a single radical expression. - 452\sqrt [ 5 ] { 4 } \cdot \sqrt { 2 }

(Multiple Choice)
4.7/5
(33)

Use a calculator to approximate the square root to 3 decimal places. Check to see that the approximation is reasonable. - 23\sqrt { 23 }

(Multiple Choice)
4.9/5
(23)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 469\frac { 4 } { \sqrt { 6 } - 9 }

(Multiple Choice)
5.0/5
(37)

Write in terms of i. - 228- \sqrt { - 228 }

(Multiple Choice)
4.7/5
(33)

Rationalize the numerator and simplify. Assume all variables represent positive real numbers. - x+2y3x\frac { \sqrt { x } + 2 \sqrt { y } } { 3 \sqrt { x } }

(Multiple Choice)
4.9/5
(36)

Perform the indicated operation. Write the result in the form a + bi. - (22i)+(8+8i)( 2 - 2 i ) + ( 8 + 8 i )

(Multiple Choice)
4.8/5
(43)

Find the cube root. - 8x30y183\sqrt [ 3 ] { - 8 x ^ { 30 } y ^ { 18 } }

(Multiple Choice)
4.8/5
(32)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 11x2y\sqrt { \frac { 11 x } { 2 y } }

(Multiple Choice)
4.9/5
(32)

Use radical notation to write the expression. Simplify if possible. - (8x9)1/3\left( - 8 x ^ { 9 } \right) ^ { 1 / 3 }

(Multiple Choice)
4.9/5
(46)

Solve. - x+1915=x+76\sqrt { x + 191 } - 5 = \sqrt { x + 76 }

(Multiple Choice)
4.8/5
(38)

Factor the given factor from the expression. - x1/7;x1/7+x1/7x ^ { - 1 / 7 } ; x ^ { - 1 / 7 } + x ^ { 1 / 7 }

(Multiple Choice)
4.8/5
(30)

Find the power of i. - (3i)7( - 3 i ) ^ { 7 }

(Multiple Choice)
4.8/5
(35)

Simplify the radical expression. Assume that all variables represent positive real numbers. - 56x5y62y4\frac { \sqrt { 56 x ^ { 5 } y ^ { 6 } } } { \sqrt { 2 y ^ { 4 } } }

(Multiple Choice)
4.8/5
(40)

Rationalize the denominator. Assume that all variables represent positive numbers. - 4x\sqrt { \frac { 4 } { x } }

(Multiple Choice)
4.9/5
(32)

Fill in the blank with one of the words or phrases listed below. index rationalizing conjugate principal square rootcube root midpoint complex numberlike radicals radicand imaginary unit distance -Radicals with the same index and the same radicand are called --------

(Multiple Choice)
4.7/5
(44)

Evaluate. -If f(x)=2x9f ( x ) = \sqrt { 2 x - 9 } , find the value of f(29)f ( 29 ) .

(Multiple Choice)
4.8/5
(34)

Perform the indicated operation. Write the result in the form a + bi. -(-9 + 2i) - 6

(Multiple Choice)
4.9/5
(31)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 593\sqrt [ 3 ] { \frac { 5 } { 9 } }

(Multiple Choice)
4.8/5
(35)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 10x17y\sqrt { 10 x } \cdot \sqrt { 17 y }

(Multiple Choice)
4.9/5
(40)
Showing 101 - 120 of 379
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)