Exam 10: Rational Exponents, Radicals, and Complex Numbers

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Perform the indicated operations. Assume that all variables represent positive numbers. - (34)(26)( \sqrt { 3 } - 4 ) ( \sqrt { 2 } - 6 )

(Multiple Choice)
5.0/5
(31)

Rationalize the numerator and simplify. Assume all variables represent positive real numbers. - 6+77\frac { \sqrt { 6 } + 7 } { \sqrt { 7 } }

(Multiple Choice)
4.9/5
(36)

Write in terms of i. - 324\sqrt { - 324 }

(Multiple Choice)
4.8/5
(31)

Perform the indicated operation and simplify. Write the result in the form a a+bia + bi - 81\sqrt { - 81 }

(Multiple Choice)
4.9/5
(47)

Add or subtract. Assume all variables represent positive real numbers. - 26954- 2 \sqrt { 6 } - 9 \sqrt { 54 }

(Multiple Choice)
4.7/5
(42)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 32\sqrt { 3 } \cdot \sqrt { 2 }

(Multiple Choice)
4.9/5
(36)

Add or subtract. Assume all variables represent positive real numbers. - 9x3y103+4xy27y739 \sqrt [ 3 ] { x ^ { 3 } y ^ { 10 } } + 4 x y \sqrt [ 3 ] { 27 y ^ { 7 } }

(Multiple Choice)
4.9/5
(40)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - 109x23\sqrt [ 3 ] { \frac { 10 } { 9 x ^ { 2 } } }

(Multiple Choice)
4.7/5
(45)

Use the product rule to multiply. Assume all variables represent positive real numbers. - 1111\sqrt { 11 } \cdot \sqrt { 11 }

(Multiple Choice)
4.8/5
(40)

Solve. - 9x280x=x280x9 \sqrt { \mathrm { x } ^ { 2 } - 80 \mathrm { x } } = \mathrm { x } ^ { 2 } - 80 \mathrm { x }

(Multiple Choice)
4.8/5
(46)

Write in terms of i. - 49\sqrt { - 49 }

(Multiple Choice)
4.7/5
(36)

Solve the problem. -Find the distance between the points (2, 2) and (6, -6).

(Multiple Choice)
4.9/5
(33)

Simplify the radical expression. Assume that all variables represent positive real numbers. - 17015\sqrt [ 5 ] { 1701 }

(Multiple Choice)
4.8/5
(39)

Simplify the radical expression. Assume that all variables represent positive real numbers. - 543\sqrt [ 3 ] { 54 }

(Multiple Choice)
4.8/5
(38)

Find the cube root. - x213\sqrt [ 3 ] { x ^ { 21 } }

(Multiple Choice)
4.8/5
(31)

Rationalize the denominator and simplify. Assume that all variables represent positive real numbers. - ss+w\frac { \sqrt { s } } { \sqrt { s } + \sqrt { w } }

(Multiple Choice)
4.9/5
(35)

Identify the domain and then graph the function. - f(x)=x23f ( x ) = \sqrt [ 3 ] { x - 2 } ; use the following table.  Identify the domain and then graph the function. - f ( x ) = \sqrt [ 3 ] { x - 2 } ; use the following table.

(Multiple Choice)
4.8/5
(26)

Multiply, and then simplify if possible. Assume all variables represent positive real numbers. - (x3+2)(x33x+3)( \sqrt [ 3 ] { x } + 2 ) ( \sqrt [ 3 ] { x } - 3 \sqrt { x } + 3 )

(Multiple Choice)
4.7/5
(43)

Simplify the radical expression. Assume that all variables represent positive real numbers. - x1325\frac { \sqrt { x ^ { 13 } } } { \sqrt { 25 } }

(Multiple Choice)
4.7/5
(43)

Solve. -When an object is dropped to the ground from a height of h meters, the time it takes for the object to reach the ground is given by the equation t=h4.9t = \sqrt { \frac { \mathrm { h } } { 4.9 } } , where tt is measured in seconds. If an object falls 122.5122.5 meters before it hits the ground, find the time it took for the object to fall.

(Multiple Choice)
4.7/5
(40)
Showing 41 - 60 of 379
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)