Exam 7: Linear Systems and Matrices

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Given: A=[870523],B=[307492],c=8A = \left[ \begin{array} { r r r } 8 & - 7 & 0 \\ - 5 & - 2 & 3 \end{array} \right] , B = \left[ \begin{array} { r r r } 3 & 0 & 7 \\ 4 & 9 & - 2 \end{array} \right] , c = 8 and d=3d = - 3 , determine cA+dBc A + d B .

Free
(Multiple Choice)
4.9/5
(40)
Correct Answer:
Verified

C

Find the minor M13M _ { 13 } and its cofactor C13C _ { 13 } of the matrix [962496183918]\left[ \begin{array} { c c c } 9 & - 6 & 24 \\ - 9 & 6 & - 18 \\ 3 & - 9 & 18 \end{array} \right] .

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

E

Find the equation of the parabola y=ax2+bx+cy = a x ^ { 2 } + b x + c that passes through the points. (3,9),(2,7),(1,7)( - 3,9 ) , ( - 2,7 ) , ( - 1,7 )

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

E

Solve system of equations by the method of substitution. {15x325y=015xy=0\left\{ \begin{array} { r } 15 x ^ { 3 } - 25 y = 0 \\15 x - y = 0\end{array} \right.

(Multiple Choice)
4.9/5
(32)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. x+9y+9z =-22 y-6z =-23 z =3 x+8y-5z =-63 y+4z =7 z =3

(Multiple Choice)
4.9/5
(29)

Determine which ordered pair is a solution of the system. {x2y2=75x+6y=7\left\{ \begin{aligned}x - 2 y ^ { 2 } & = - 7 \\- 5 x + 6 y & = 7\end{aligned} \right.

(Multiple Choice)
4.9/5
(43)

Solve the system of equations algebraically. {xy+289=04x25y340=0\left\{ \begin{array} { r } x y + 289 = 0 \\4 x - 25 y - 340 = 0\end{array} \right.

(Multiple Choice)
4.9/5
(39)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. x+9y-2z =41 y-7z =46 z =-6 x+4y+2z =-3 y+5z =-26 z =-6

(Multiple Choice)
4.8/5
(44)

Use a system of equations to find the specified equation that passes through the points. Solve the system using matrices. Parabola: y=ax2+bx+cy = a x ^ { 2 } + b x + c  Use a system of equations to find the specified equation that passes through the points. Solve the system using matrices. Parabola:  y = a x ^ { 2 } + b x + c

(Multiple Choice)
4.9/5
(33)

Solve the system of linear equations. {x+4y+2z=24x+y4z=93xy+2z=3\left\{ \begin{array} { c } x + 4 y + 2 z = - 2 \\- 4 x + y - 4 z = 9 \\3 x - y + 2 z = - 3\end{array} \right.

(Multiple Choice)
4.9/5
(40)

Write the system of linear equations as a matrix equation AX=BA X = B , and use GaussJordan elimination on the augmented matrix [AB][ A \vdots B ] to solve for the matrix XX . {x13x29x3=43x1+4x2+7x3=517x17x2+3x3=57\left\{ \begin{array} { l } x _ { 1 } - 3 x _ { 2 } - 9 x _ { 3 } = 43 \\x _ { 1 } + 4 x _ { 2 } + 7 x _ { 3 } = - 51 \\7 x _ { 1 } - 7 x _ { 2 } + 3 x _ { 3 } = - 57\end{array} \right.

(Multiple Choice)
4.9/5
(37)

Solve the system of linear equations {6x112x26x312x4=018x130x212x318x4=312x130x212x330x4=26x1+24x2+24x3+66x4=0\left\{ \begin{array} { l } 6 x _ { 1 } - 12 x _ { 2 } - 6 x _ { 3 } - 12 x _ { 4 } = 0 \\18 x _ { 1 } - 30 x _ { 2 } - 12 x _ { 3 } - 18 x _ { 4 } = - 3 \\12 x _ { 1 } - 30 x _ { 2 } - 12 x _ { 3 } - 30 x _ { 4 } = 2 \\- 6 x _ { 1 } + 24 x _ { 2 } + 24 x _ { 3 } + 66 x _ { 4 } = 0\end{array} \right. using the inverse matrix 16[24712103012973212311]\frac { 1 } { 6 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\ - 10 & 3 & 0 & - 1 \\ - 29 & 7 & 3 & - 2 \\ 12 & - 3 & - 1 & 1 \end{array} \right] .

(Multiple Choice)
4.8/5
(44)

Find the equation of the circle x2+y2+Dx+Ey+F=0x ^ { 2 } + y ^ { 2 } + D x + E y + F = 0 that passes through the points (1,9),(4,4),(6,4)( 1,9 ) , ( - 4,4 ) , ( 6,4 ) .

(Multiple Choice)
4.8/5
(27)

Solve for xx given the following equation involving a determinant. x+251x+8=0\left| \begin{array} { c c } x + 2 & 5 \\- 1 & x + 8\end{array} \right| = 0

(Multiple Choice)
4.8/5
(31)

Write the system of linear equations represented by the augmented matrix. Then use back-substitution to solve. (Use variables x,yx , y , and zz .) [14323014190015]\left[ \begin{array} { c c c : c } 1 & 4 & - 3 & - 23 \\0 & 1 & 4 & 19 \\0 & 0 & 1 & 5\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Find AB| A B | , if A=[345351551],B=[125413114]A = \left[ \begin{array} { r r r } - 3 & 4 & 5 \\- 3 & - 5 & 1 \\5 & - 5 & 1\end{array} \right] , B = \left[ \begin{array} { r r r } - 1 & - 2 & 5 \\4 & 1 & - 3 \\- 1 & - 1 & 4\end{array} \right]

(Multiple Choice)
4.8/5
(38)

Evaluate the expression. [7365]+[6712]+[4994]\left[ \begin{array} { c c } - 7 & - 3 \\6 & 5\end{array} \right] + \left[ \begin{array} { c c } - 6 & 7 \\- 1 & 2\end{array} \right] + \left[ \begin{array} { c c } 4 & 9 \\9 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(29)

Determine whether the system of linear equations is consistent or inconsistent. {9x+6y=181x+54y=10\left\{ \begin{array} { c } - 9 x + 6 y = - 1 \\- 81 x + 54 y = - 10\end{array} \right.

(Multiple Choice)
4.9/5
(35)

An object moving vertically is at the given heights at the specified times. Find the position equation s=12at2+vot+sos = \frac { 1 } { 2 } a t ^ { 2 } + v _ { o } t + s _ { o } for the object. At t=1t = 1 second, s=234s = 234 feet At t=2t = 2 seconds, s=202s = 202 feet At t=3t = 3 seconds, s=138s = 138 feet

(Multiple Choice)
4.8/5
(36)

Determine which one of the ordered triples below is a solution of the given system of equations. {7x9y+6z=19x+2y3z=373x4y+5z=7\left\{ \begin{array} { l } 7 x - 9 y + 6 z = 1 \\9 x + 2 y - 3 z = 37 \\3 x - 4 y + 5 z = 7\end{array} \right.

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)