Exam 7: Linear Systems and Matrices

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

An augmented matrix that represents a system of linear equations (in variables x,yx , y , and zz ) has been reduced using Gauss-Jordan elimination. Write the solution represented by the augmented matrix. [100101030018]\left[ \begin{array} { c c c : c } 1 & 0 & 0 & - 1 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 8\end{array} \right]

(Multiple Choice)
4.8/5
(39)

Use a determinant to determine whether the points below are collinear. (3,1),(0,3),(27,15)( 3 , - 1 ) , ( 0 , - 3 ) , ( 27,15 )

(Multiple Choice)
4.7/5
(37)

Solve system by the method of substitution and graph your solution. {y=x3+3x2+2xy=x\left\{ \begin{array} { l } y = x ^ { 3 } + 3 x ^ { 2 } + 2 x \\y = - x\end{array} \right.

(Multiple Choice)
4.7/5
(40)

Solve the system of equations algebraically. {xy+25=049x100y700=0\left\{ \begin{array} { r } x y + 25 = 0 \\49 x - 100 y - 700 = 0\end{array} \right.

(Multiple Choice)
4.8/5
(33)

If possible, find 5A+4B5 A + 4 B . A=[892214],B=[821384]A = \left[ \begin{array} { c c c } - 8 & 9 & 2 \\ - 2 & 1 & - 4 \end{array} \right] , B = \left[ \begin{array} { c c c } 8 & 2 & 1 \\ - 3 & 8 & 4 \end{array} \right]

(Multiple Choice)
4.9/5
(37)

Find AB| A B | , if A=[522341562],B=[113534512]A = \left[ \begin{array} { r r r } 5 & - 2 & - 2 \\- 3 & 4 & - 1 \\- 5 & 6 & 2\end{array} \right] , B = \left[ \begin{array} { r r r } 1 & - 1 & - 3 \\- 5 & - 3 & 4 \\- 5 & - 1 & - 2\end{array} \right]

(Multiple Choice)
4.8/5
(27)

An augmented matrix that represents a system of linear equations (in variables xx , yy , and zz ) has been reduced using Gauss-Jordan elimination. Write the solution represented by the augmented matrix. [100901080017]\left[ \begin{array} { c c c : c } 1 & 0 & 0 & 9 \\0 & 1 & 0 & 8 \\0 & 0 & 1 & - 7\end{array} \right]

(Multiple Choice)
4.8/5
(41)

Solve the system of equations below using Gaussian elimination. 5x+4y+3z=-72 x-2y+2z=-48 x-y-z=24

(Multiple Choice)
5.0/5
(22)

Solve system of equations by the method of substitution. {12x39y=012xy=0\left\{ \begin{aligned}12 x ^ { 3 } - 9 y & = 0 \\12 x - y & = 0\end{aligned} \right.

(Multiple Choice)
4.9/5
(26)

Solve the system of linear equations. {x+5y+5z=92x+z=62x+4y3z=2\left\{ \begin{aligned}x + 5 y + 5 z & = 9 \\- 2 x + z & = - 6 \\2 x + 4 y - 3 z & = - 2\end{aligned} \right.

(Multiple Choice)
4.9/5
(30)

Find the inverse of the matrix [4515]\left[ \begin{array} { c c } 4 & - 5 \\ 1 & 5 \end{array} \right] (if it exists).

(Multiple Choice)
4.9/5
(41)

Evaluate the expression. 14[911]+[468]\frac { 1 } { 4 } \left[ \begin{array} { l l l } - 9 & 1 & - 1\end{array} \right] + \left[ \begin{array} { l l l } - 4 & - 6 & 8\end{array} \right]

(Multiple Choice)
4.8/5
(42)

Solve the system of equations below using Gaussian elimination. 5x+4y+3z =54 x-2y+2z =36 x-y-z =-18

(Multiple Choice)
5.0/5
(33)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. x+5y-5z =42 y-9z =48 z =-5 x+8y-3z =31 y+5z =-22 z =-5

(Multiple Choice)
4.8/5
(29)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. x+y-9z =-67 y+5z =31 z =7 x-9y+6z =76 y-9z =-67 z =7

(Multiple Choice)
4.8/5
(28)

Write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants. x+9x(x2+3)2\frac { x + 9 } { x \left( x ^ { 2 } + 3 \right) ^ { 2 } }

(Multiple Choice)
4.8/5
(43)

Fill in the blank using elementary row operations to form a row-equivalent matrix. 2 -1 -9 8 -6 4 2 -1 -9 0 \square 40

(Multiple Choice)
4.8/5
(40)

Solve the system by the method of elimination. Round numbers to three decimal places. {5.7x+7.1y=3.20.8x4.8y=1.1\left\{ \begin{array} { c } 5.7 x + 7.1 y = 3.2 \\- 0.8 x - 4.8 y = - 1.1\end{array} \right.

(Multiple Choice)
4.9/5
(32)

Perform the indicated row operations on the matrix. Show the final result. [17174885139]\left[ \begin{array} { c c c } 1 & 7 & 1 \\- 7 & - 48 & - 8 \\- 5 & - 1 & - 39\end{array} \right] Add 7 times R1R _ { 1 } to R2R _ { 2 } . Add 5 times R1R _ { 1 } to R3R _ { 3 } .

(Multiple Choice)
4.9/5
(28)

If possible, find 3A+4B3 A + 4 B . A=[439325],B=[895021]A = \left[ \begin{array} { c c c } - 4 & 3 & 9 \\3 & - 2 & 5\end{array} \right] , B = \left[ \begin{array} { c c c } - 8 & 9 & 5 \\0 & 2 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(34)
Showing 81 - 100 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)