Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate using a graphing utility: 20P5{ } _ { 20 } P _ { 5 }

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

C

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that nn begins with 1.) an=6+4na _ { n } = - 6 + 4 n

Free
(Multiple Choice)
4.8/5
(28)
Correct Answer:
Verified

D

Find the sum using the formulas for the sums of powers of integers. n=112n3\sum _ { n = 1 } ^ { 12 } n ^ { 3 } A) 4356 B) 12,168 C) 1728 D) 650 E) 6084 Use mathematical induction to prove the property for all positive integers nn . [an]4=a4n\left[ a ^ { n } \right] ^ { 4 } = a ^ { 4 n }

Free
(Essay)
4.8/5
(27)
Correct Answer:
Verified

E 1) n=1n = 1 :
[a1]4=?a41[a]4=?a4a4=a4\begin{array} { r } { \left[ a ^ { 1 } \right] ^ { 4 } \stackrel { ? } { = } a ^ { 4 \cdot 1 } } \\{ [ a ] ^ { 4 } \stackrel { ? } { = } a ^ { 4 } } \\a ^ { 4 } = a ^ { 4 }\end{array}
The statement is true for n=1n = 1 .
2) Assume [ak]4=a4k\left[ a ^ { k } \right] ^ { 4 } = a ^ { 4 k } . Then,
(a)4[ak]4=(a)4(a4k)[aak]4=a4+4k[ak+1]4=a4(k+1)\begin{array} { c } ( a ) ^ { 4 } \left[ a ^ { k } \right] ^ { 4 } = ( a ) ^ { 4 } \left( a ^ { 4 k } \right) \\{ \left[ a \cdot a ^ { k } \right] ^ { 4 } = a ^ { 4 + 4 k } } \\{ \left[ a ^ { k + 1 } \right] ^ { 4 } = a ^ { 4 ( k + 1 ) } }\end{array}
By mathematical induction, the property is true for all positive values of nn .

Find the sum of the finite geometric sequence. Round to the nearest thousandth. i=06200(1.07)i\sum _ { i = 0 } ^ { 6 } 200 ( 1.07 ) ^ { i }

(Multiple Choice)
4.7/5
(30)

Find the sum of the following infinite geometric series. 14+1316914+2197196- 14 + 13 - \frac { 169 } { 14 } + \frac { 2197 } { 196 } - \ldots

(Multiple Choice)
4.8/5
(36)

Use mathematical induction to prove that 160 is a factor of 24n+3+322 ^ { 4 n + 3 } + 32 for all positive nn .

(Essay)
4.9/5
(33)

Find the number of distinguishable permutations of the group of letters. E,S,T,I,M,A,T,EE , S , T , I , M , A , T , E

(Multiple Choice)
4.7/5
(32)

Find the probability for the experiment of drawing two marbles (without replacement) from a bag containing four green, six yellow, and five red marbles such that both marbles are yellow.

(Multiple Choice)
4.7/5
(39)

Evaluate: 8P5{ } _ { 8 } P _ { 5 }

(Multiple Choice)
4.8/5
(30)

Find the sum of the infinite series. i=12(14)i\sum _ { i = 1 } ^ { \infty } 2 \left( \frac { 1 } { 4 } \right) ^ { i }

(Multiple Choice)
4.8/5
(31)

Use mathematical induction to prove the following for every positive integer nn . i=1n8(2i1)(2i+1)=8n2n+1\sum _ { i = 1 } ^ { n } \frac { 8 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 8 n } { 2 n + 1 }

(Essay)
4.9/5
(33)

Find the indicated nn th term of the geometric sequence. 6th term: a5=481,a8=42187a _ { 5 } = \frac { 4 } { 81 } , a _ { 8 } = \frac { 4 } { 2187 }

(Multiple Choice)
4.9/5
(47)

Find the sum of the following infinite geometric series. 15+1419615+2744225- 15 + 14 - \frac { 196 } { 15 } + \frac { 2744 } { 225 } - \ldots

(Multiple Choice)
4.9/5
(41)

Find Pk+1P _ { k + 1 } for the given PkP _ { k } . Pk=7+13+19++[6(k1)+1]+[6k+1]P _ { k } = 7 + 13 + 19 + \ldots + [ 6 ( k - 1 ) + 1 ] + [ 6 k + 1 ]

(Multiple Choice)
4.8/5
(36)

Given the sequence 4+78,4+89,4+910,4+1011,4+1112,4 + \frac { 7 } { 8 } , 4 + \frac { 8 } { 9 } , 4 + \frac { 9 } { 10 } , 4 + \frac { 10 } { 11 } , 4 + \frac { 11 } { 12 } , \ldots , write an expression for the apparent nn th term assuming nn begins with 1 .

(Multiple Choice)
4.8/5
(40)

Determine whether the sequence is geometric. If so, find the common ratio. 2,6,18,54,- 2,6 , - 18,54 , \ldots

(Multiple Choice)
4.8/5
(38)

Use the Binomial Theorem to expand the following complex number. Write your answer in standard form. (3777i)3\left( - \frac { 3 } { 7 } - \frac { \sqrt { 7 } } { 7 } i \right) ^ { 3 }

(Multiple Choice)
4.9/5
(42)

Expand the following binomial by using Pascal's Triangle. (2x4)5( 2 x - 4 ) ^ { 5 }

(Multiple Choice)
4.9/5
(34)

Find the indicated term of the sequence. an=(1)n(5n1)a _ { n } = ( - 1 ) ^ { n } ( 5 n - 1 )  Find the indicated term of the sequence.  a _ { n } = ( - 1 ) ^ { n } ( 5 n - 1 )

(Multiple Choice)
4.8/5
(34)

Use mathematical induction to prove the following equality. ln(3nx1x2xn)=ln(3x1)+ln(3x2)++ln(3xn)\quad \ln \left( 3 ^ { n } x _ { 1 } x _ { 2 } \ldots x _ { n } \right) = \ln \left( 3 x _ { 1 } \right) + \ln \left( 3 x _ { 2 } \right) + \ldots + \ln \left( 3 x _ { n } \right) , where x1>0,x2>0,,xn>0x _ { 1 } > 0 , x _ { 2 } > 0 , \ldots , x _ { n } > 0 x1>0,x2>0,,xn>0x _ { 1 } > 0 , x _ { 2 } > 0 , \ldots , x _ { n } > 0

(Essay)
4.8/5
(38)
Showing 1 - 20 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)