Exam 7: Linear Systems and Matrices

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Given: A=[6107243],B=[173122],c=4A = \left[ \begin{array} { r r r } - 6 & - 10 & 7 \\ - 2 & 4 & 3 \end{array} \right] , B = \left[ \begin{array} { r r r } - 1 & 7 & - 3 \\ 1 & 2 & - 2 \end{array} \right] , c = - 4 and d=2d = 2 , determine cA+dBc A + d B .

(Multiple Choice)
4.8/5
(37)

Determine the order of the matrix. [482074]\left[ \begin{array} { c c c } - 4 & - 8 & 2 \\0 & - 7 & - 4\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Use a system of equations to find the specified equation that passes through the points. Solve the system using matrices. Parabola: y=ax2+bx+cy = a x ^ { 2 } + b x + c  Use a system of equations to find the specified equation that passes through the points. Solve the system using matrices. Parabola:  y = a x ^ { 2 } + b x + c

(Multiple Choice)
4.8/5
(28)

Find xx and yy . [1xy3]=[1643]\left[ \begin{array} { l l } 1 & x \\y & 3\end{array} \right] = \left[ \begin{array} { c c } 1 & - 6 \\- 4 & 3\end{array} \right]

(Multiple Choice)
4.8/5
(40)

Solve for XX in the equation given. 3X=2AB,A=[6285] and B=[31071]3 X = 2 A - B , A = \left[ \begin{array} { c c } - 6 & 2 \\8 & - 5\end{array} \right] \text { and } B = \left[ \begin{array} { c c } - 3 & 10 \\7 & - 1\end{array} \right]

(Multiple Choice)
4.8/5
(28)

Find xx and yy . [x+364y52x18y92]=[9x+196165418132]\left[ \begin{array} { c c c } x + 3 & 6 & 4 y \\5 & 2 x & - 1 \\8 & y - 9 & 2\end{array} \right] = \left[ \begin{array} { c c c } 9 x + 19 & 6 & - 16 \\5 & - 4 & - 1 \\8 & - 13 & 2\end{array} \right]

(Multiple Choice)
4.7/5
(26)

Determine which ordered pair is a solution of the system. {3x6y=89x+8y=5\left\{ \begin{array} { l } 3 x - 6 y = - 8 \\9 x + 8 y = 5\end{array} \right.

(Multiple Choice)
4.7/5
(35)

Perform the indicated row operations on the matrix. Show the final result. [1232311833]\left[ \begin{array} { c c c } 1 & - 2 & - 3 \\2 & - 3 & - 1 \\1 & - 8 & - 33\end{array} \right] Add 2- 2 times R1R _ { 1 } to R2R _ { 2 } . Add 1- 1 times R1R _ { 1 } to R3R _ { 3 } .

(Multiple Choice)
4.8/5
(37)

Solve the system of linear equations {8x116x28x316x4=024x140x216x324x4=916x140x216x340x4=68x1+32x2+32x3+88x4=0\left\{ \begin{array} { l } 8 x _ { 1 } - 16 x _ { 2 } - 8 x _ { 3 } - 16 x _ { 4 } = 0 \\24 x _ { 1 } - 40 x _ { 2 } - 16 x _ { 3 } - 24 x _ { 4 } = - 9 \\16 x _ { 1 } - 40 x _ { 2 } - 16 x _ { 3 } - 40 x _ { 4 } = 6 \\- 8 x _ { 1 } + 32 x _ { 2 } + 32 x _ { 3 } + 88 x _ { 4 } = 0\end{array} \right. using the inverse matrix 18[24712103012973212311]\frac { 1 } { 8 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\ - 10 & 3 & 0 & - 1 \\ - 29 & 7 & 3 & - 2 \\ 12 & - 3 & - 1 & 1 \end{array} \right] .

(Multiple Choice)
4.8/5
(38)

Solve the system of linear equations {4x18x24x38x4=012x120x28x312x4=98x120x28x320x4=64x1+16x2+16x3+44x4=0\left\{ \begin{array} { l l } 4 x _ { 1 } - 8 x _ { 2 } - 4 x _ { 3 } - 8 x _ { 4 } & = 0 \\ 12 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 12 x _ { 4 } & = - 9 \\ 8 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 20 x _ { 4 } & = 6 \\ - 4 x _ { 1 } + 16 x _ { 2 } + 16 x _ { 3 } + 44 x _ { 4 } & = 0 \end{array} \right. using the inverse matrix 14[24712103012973212311]\frac { 1 } { 4 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\ - 10 & 3 & 0 & - 1 \\ - 29 & 7 & 3 & - 2 \\ 12 & - 3 & - 1 & 1 \end{array} \right]

(Multiple Choice)
4.8/5
(31)

Find the minor M13M _ { 13 } and its cofactor C13C _ { 13 } of the matrix [328326136]\left[ \begin{array} { c c c } - 3 & 2 & - 8 \\ 3 & - 2 & 6 \\ - 1 & 3 & - 6 \end{array} \right] .

(Multiple Choice)
4.8/5
(35)

Solve system of equations by the method of substitution. {4x325y=04xy=0\left\{ \begin{array} { r } 4 x ^ { 3 } - 25 y = 0 \\4 x - y = 0\end{array} \right.

(Multiple Choice)
4.8/5
(35)

Use a determinant to determine whether the points below are collinear. (3,1),(0,3),(24,13)( 3 , - 1 ) , ( 0 , - 3 ) , ( 24,13 )

(Multiple Choice)
4.8/5
(19)

Given: A=[742458],B=[417883]A = \left[ \begin{array} { r r r } - 7 & - 4 & 2 \\ 4 & - 5 & - 8 \end{array} \right] , B = \left[ \begin{array} { r r r } - 4 & 1 & - 7 \\ 8 & - 8 & 3 \end{array} \right] and c=6c = - 6 determine cAB2c A B ^ { 2 } .

(Multiple Choice)
4.8/5
(37)

Find the determinant of [06096183018]\left[ \begin{array} { c c c } 0 & - 6 & 0 \\ - 9 & 6 & - 18 \\ 3 & 0 & 18 \end{array} \right] by the method of expansion by cofactors.

(Multiple Choice)
4.7/5
(42)

Use the matrix capabilities of a graphing utility to reduce the augmented matrix corresponding to the system of equations, and solve the system. {x+4y+8z=57x3y4z=64x4y8z=56x+5y+7z=18\left\{ \begin{array} { c } x + 4 y + 8 z = 5 \\7 x - 3 y - 4 z = - 64 \\- x - 4 y - 8 z = - 5 \\6 x + 5 y + 7 z = - 18\end{array} \right.

(Multiple Choice)
4.9/5
(35)

Solve the system of linear equations. {x+y+z=11x6y3z=136y7z=42\left\{ \begin{aligned}x + y + z & = - 11 \\x - 6 y - 3 z & = 13 \\6 y - 7 z & = 42\end{aligned} \right.

(Multiple Choice)
4.9/5
(41)

Solve the system of linear equations {8x+24y+8z=516x+40y=1024x+8y16z=5\left\{ \begin{array} { l l } - 8 x + 24 y + 8 z & = 5 \\ 16 x + 40 y & = 10 \\ 24 x + 8 y - 16 z = - 5 \end{array} \right. using an inverse

(Multiple Choice)
4.8/5
(39)

Use the matrix capabilities of a graphing utility to find ABA B , if possible. A=[752018282],B=[439413981]A = \left[ \begin{array} { c c c } - 7 & 5 & 2 \\0 & 1 & 8 \\2 & 8 & - 2\end{array} \right] , B = \left[ \begin{array} { c c c } 4 & 3 & - 9 \\- 4 & - 1 & - 3 \\9 & 8 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(31)

Find the equilibrium point of the demand and supply equations. (The equilibrium point is the price pp and number of units xx that satisfy both the demand and supply equations.) Demand Supply p=130-0.09x p=0.4x-115

(Multiple Choice)
4.8/5
(36)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)