Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=4+7xf ( x ) = - 4 + 7 x .

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

C

Approximate the area of the region under the function below on the interval [0,2][ 0,2 ] using 8 rectangles. Round your answer to two decimals. f(x)=13x4f ( x ) = \frac { 1 } { 3 } x ^ { 4 }

Free
(Multiple Choice)
4.7/5
(36)
Correct Answer:
Verified

B

Estimate the following limit numerically, if it exists. limx1x1x2+6x7\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } + 6 x - 7 }

Free
(Multiple Choice)
4.7/5
(35)
Correct Answer:
Verified

A

Use the graph below to find limx2x+2x+2\lim _ { x \rightarrow - 2 } \frac { | x + 2 | } { x + 2 } , if it exists.  Use the graph below to find  \lim _ { x \rightarrow - 2 } \frac { | x + 2 | } { x + 2 } , if it exists.

(Multiple Choice)
4.8/5
(30)

Use the graph to find limx23x212x2\lim _ { x \rightarrow 2 } \frac { 3 x ^ { 2 } - 12 } { x - 2 } .  Use the graph to find  \lim _ { x \rightarrow 2 } \frac { 3 x ^ { 2 } - 12 } { x - 2 } .

(Multiple Choice)
4.9/5
(38)

Find the following limit, if it exists. limx3x6\lim _ { x \rightarrow \infty } \frac { 3 } { x ^ { - 6 } }

(Multiple Choice)
4.9/5
(39)

Find limx3(13x32x)\lim _ { x \rightarrow - 3 } \left( \frac { 1 } { 3 } x ^ { 3 } - 2 x \right) by direct substitution.

(Multiple Choice)
4.7/5
(37)

Find limx0xx+77\lim _ { x \rightarrow 0 ^ { - } } \frac { x } { \sqrt { x + 7 } - \sqrt { 7 } }

(Multiple Choice)
4.9/5
(36)

A union contract guarantees a 16%16 \% salary increase yearly for 3 years. For a current salary of $31,500\$ 31,500 , the salary f(t)f ( t ) (in thousands of dollars) for the next 3 years is given by f(t)={31.50,0<t136.54,1<t242.39,2<t3f ( t ) = \left\{ \begin{array} { l l } 31.50 , & 0 < t \leq 1 \\36.54 , & 1 < t \leq 2 \\42.39 , & 2 < t \leq 3\end{array} \right. where tt represents the time in years. Find the limit of ff as t1.00t \rightarrow 1.00 , if it exists.

(Multiple Choice)
4.8/5
(42)

Use the first six terms to predict the limit of the sequence an=8n3+6n+3a _ { n } = \frac { 8 n ^ { 3 } + 6 } { n + 3 } (assume nn begins with 1).

(Multiple Choice)
4.7/5
(22)

Approximate the area of the indicated region under the given curve using five rectangles. f(x)=5x2f ( x ) = 5 - x ^ { 2 }  Approximate the area of the indicated region under the given curve using five rectangles.  f ( x ) = 5 - x ^ { 2 }

(Multiple Choice)
4.8/5
(35)

Rewrite i=1n9i3n5\sum _ { i = 1 } ^ { n } \frac { 9 i ^ { 3 } } { n ^ { 5 } } as a rational function S(n)S ( n ) and find limnS(n)\lim _ { n \rightarrow \infty } S ( n ) .

(Multiple Choice)
4.9/5
(35)

Consider the following graph of the function and approximate limx0e4x1x\lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.  Consider the following graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.

(Multiple Choice)
4.9/5
(35)

Find the following limit, if it exists. limx3x5\lim _ { x \rightarrow - 3 } x ^ { 5 }

(Multiple Choice)
4.8/5
(40)

Find the following limit. Round your answer to two decimals. limx3x2+72x2\lim _ { x \rightarrow 3 } \frac { \sqrt { x ^ { 2 } + 7 } } { 2 x ^ { 2 } }

(Multiple Choice)
4.8/5
(38)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.8/5
(30)

Using the summation formulas and properties, evaluate the following expression. i=1604\sum _ { i = 1 } ^ { 60 } 4

(Multiple Choice)
4.8/5
(40)

A union contract guarantees a 15%15 \% salary increase yearly for 3 years. For a current salary of $31,000\$ 31,000 , the salary f(t)f ( t ) (in thousands of dollars) for the next 3 years is given by f(t)={31.00,0<t135.65,1<t241.00,2<t3f ( t ) = \left\{ \begin{array} { l l } 31.00 , & 0 < t \leq 1 \\35.65 , & 1 < t \leq 2 \\41.00 , & 2 < t \leq 3\end{array} \right. where tt represents the time in years. Find the limit of ff as t1.00t \rightarrow 1.00 , if it exists.

(Multiple Choice)
4.7/5
(38)

Use the graph to determine limx0x2xx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x } (if it exists).  Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x }  (if it exists).

(Multiple Choice)
5.0/5
(38)

Find the following limit, if it exists. limx3x7\lim _ { x \rightarrow 3 } x ^ { 7 }

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)