Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If x =10sin?, use trigonometric substitution to write 100x2\sqrt{100-x^{2}} as a trigonometric function of ?, where π2<θ<π2-\frac{\pi}{2}<\theta<\frac{\pi}{2}

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

B

Use a graphing utility to approximate the solutions (to three decimal places) of the given equation in the interval [0,2π)[ 0,2 \pi ) . (cosx)(15cosx+4)3=0( \cos x ) ( 15 \cos x + 4 ) - 3 = 0

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

E

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } . (Both uu and vv are in Quadrant II.)

Free
(Multiple Choice)
4.9/5
(25)
Correct Answer:
Verified

C

Solve the multi-angle equation below. sin(2x)=32\sin ( 2 x ) = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.9/5
(29)

Use the cofunction identities to evaluate the expression below without the aid of a calculator. cos250+cos258+cos240+cos232\cos ^ { 2 } 50 ^ { \circ } + \cos ^ { 2 } 58 ^ { \circ } + \cos ^ { 2 } 40 ^ { \circ } + \cos ^ { 2 } 32 ^ { \circ }

(Multiple Choice)
4.8/5
(32)

Solve the following equation. tanx3=0\tan x - \sqrt { 3 } = 0

(Multiple Choice)
4.9/5
(30)

Find all solutions of the following equation on the interval [0,2π)[ 0,2 \pi ) . cot(x)+3=0\cot ( x ) + \sqrt { 3 } = 0

(Multiple Choice)
4.8/5
(28)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sinxcos2x+cosxsin2x=0\sin x \cos 2 x + \cos x \sin 2 x = 0

(Multiple Choice)
4.9/5
(28)

Determine which of the following are trigonometric identities. I. cos(4x)+cos(2x)2cot(3x)=cot(x)\frac { \cos ( 4 x ) + \cos ( 2 x ) } { 2 \cot ( 3 x ) } = \cot ( x ) II. cos(4x)+cos(x)sin(3x)sin(x)=cot(2x)\frac { \cos ( 4 x ) + \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = \cot ( 2 x ) III. cos(6x)+cos(2x)sin(4x)+sin(2x)=cot(3x)\frac { \cos ( 6 x ) + \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = \cot ( 3 x )

(Multiple Choice)
4.8/5
(47)

Use the figure below to find the exact value of the given trigonometric expression. cotx2\cot \frac { x } { 2 }  Use the figure below to find the exact value of the given trigonometric expression.  \cot \frac { x } { 2 }

(Multiple Choice)
4.8/5
(33)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . 2sin2x+sinx=12 \sin ^ { 2 } x + \sin x = 1

(Multiple Choice)
4.9/5
(33)

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. csc3xcsc2xcscx+1\csc ^ { 3 } x - \csc ^ { 2 } x - \csc x + 1

(Multiple Choice)
4.7/5
(42)

Find all solutions of the following equation on the interval [0,2π)[ 0,2 \pi ) . csc2(x)2=0\csc ^ { 2 } ( x ) - 2 = 0

(Multiple Choice)
4.8/5
(37)

If x=6sinθx = 6 \sin \theta , use trigonometric substitution to write 36x2\sqrt { 36 - x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π20 < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(35)

Solve the following equation. csc2(x)4=0\csc ^ { 2 } ( x ) - 4 = 0

(Multiple Choice)
4.8/5
(30)

Verify the identity shown below. 1+sinθ1sinθ=1+sinθcosθ\sqrt { \frac { 1 + \sin \theta } { 1 - \sin \theta } } = \frac { 1 + \sin \theta } { | \cos \theta | }

(Essay)
4.8/5
(38)

Verify the identity shown below. tan2θsec2θ+sec2θ=sec4θ\tan ^ { 2 } \theta \sec ^ { 2 } \theta + \sec ^ { 2 } \theta = \sec ^ { 4 } \theta

(Essay)
4.8/5
(26)

Determine which of the following are trigonometric identities. I. cot(θ)csc(θ)=sec(θ)\cot ( \theta ) \csc ( \theta ) = \sec ( \theta ) II. cot(θ)sec(θ)=csc(θ)\cot ( \theta ) \sec ( \theta ) = \csc ( \theta ) III. sec(θ)csc(θ)=cot(θ)\sec ( \theta ) \csc ( \theta ) = \cot ( \theta ) IV. cot(θ)sin(θ)=1\cot ( \theta ) \sin ( \theta ) = 1

(Multiple Choice)
4.8/5
(25)

Use the sum-to-product formulas to find the exact value of the given expression. cos150cos30\cos 150 ^ { \circ } - \cos 30 ^ { \circ }

(Multiple Choice)
5.0/5
(30)

Use the product-to-sum formula to write the given product as a sum or difference. 8sinπ8sinπ88 \sin \frac { \pi } { 8 } \sin \frac { \pi } { 8 }

(Multiple Choice)
4.8/5
(38)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)