Exam 13: Simple Linear Regression

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

TABLE 13-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales. He uses Microsoft Excel to analyze the last 4 years of quarterly data (i.e., n = 16) with the following results: Regression Statistics Multiple R 0.802 R Square 0.643 Adjusted R Square 0.618 Standard Error SYX 0.9224 Observations 16 ANOVA df SS MS F Sig.F Regression 1 21.497 21.497 25.27 0.000 Error 14 11.912 0.851 Total 15 33.409 p -value Intercept 3.962 1.440 2.75 0.016 Industry 0.040451 0.008048 5.03 0.000 Durbin-Watson Statistic 1.591.59 -Referring to Table 13-5, the prediction for a quarter in which X = 120 is Y = ________.

(Short Answer)
4.8/5
(34)

TABLE 13-4 The managers of a brokerage firm are interested in finding out if the number of new clients a broker brings into the firm affects the sales generated by the broker. They sample 12 brokers and determine the number of new clients they have enrolled in the last year and their sales amounts in thousands of dollars. These data are presented in the table that follows. 1 27 52 2 11 37 3 42 64 4 33 55 5 15 29 6 15 34 7 25 58 8 36 59 9 28 44 10 30 48 11 17 31 12 22 38 -Referring to Table 13-4, the managers of the brokerage firm wanted to test the hypothesis that the population slope was equal to 0. At a level of significance of 0.01, the decision that should be made implies that ________ (there is a or there is no)linear dependent relationship between the independent and dependent variables.

(Short Answer)
4.8/5
(44)

TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed: Regression Statistics Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000  ANOVA \text { ANOVA } df SS MS F Significance F Regression 1 171062.9193 171062.9193 86.4759 0.0000 Residual 28 55388.4309 1978.1582 Total 29 226451.3503 Coefficients Standard Error t Stat P-value Lower 95\% \multicolumn 1 r Upper 95\% Intercept -95.0614 26.9183 -3.5315 0.0015 -150.2009 -39.9218 Download 3.7297 0.4011 9.2992 0.0000 2.9082 4.5513  TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{lrrrrrr} \hline & \text { df } & {\text { SS }} & {\text { MS }} & \text { F } & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \multicolumn{1}{r}{\text { Upper 95\% }} \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}           -Referring to Table 13-11, there appears to be autocorrelation in the residuals.  TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{lrrrrrr} \hline & \text { df } & {\text { SS }} & {\text { MS }} & \text { F } & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \multicolumn{1}{r}{\text { Upper 95\% }} \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}           -Referring to Table 13-11, there appears to be autocorrelation in the residuals. -Referring to Table 13-11, there appears to be autocorrelation in the residuals.

(True/False)
4.8/5
(33)

TABLE 13-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results: Customers Sales (Thousands of Dollars) 907 11.20 926 11.05 713 8.21 741 9.21 780 9.42 898 10.08 510 6.73 529 7.02 460 6.12 872 9.52 650 7.53 603 7.25 -Referring to Table 13-10, it is inappropriate to compute the Durbin-Watson statistic and test for autocorrelation in this case.

(True/False)
4.7/5
(30)

TABLE 13-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results: Customers Sales (Thousands of Dollars) 907 11.20 926 11.05 713 8.21 741 9.21 780 9.42 898 10.08 510 6.73 529 7.02 460 6.12 872 9.52 650 7.53 603 7.25 -Referring to Table 13-10, the p-value of the t test and F test should be the same when testing whether the number of customers who make purchases is a good predictor for weekly sales.

(True/False)
5.0/5
(33)

TABLE 13-4 The managers of a brokerage firm are interested in finding out if the number of new clients a broker brings into the firm affects the sales generated by the broker. They sample 12 brokers and determine the number of new clients they have enrolled in the last year and their sales amounts in thousands of dollars. These data are presented in the table that follows. 1 27 52 2 11 37 3 42 64 4 33 55 5 15 29 6 15 34 7 25 58 8 36 59 9 28 44 10 30 48 11 17 31 12 22 38 -Referring to Table 13-4, suppose the managers of the brokerage firm want to construct both a 99% confidence interval estimate and a 99% prediction interval for X = 24. The confidence interval estimate would be the ________ (wider or narrower)of the two intervals.

(Short Answer)
4.8/5
(38)

The residual represents the discrepancy between the observed dependent variable and its ________ value.

(Short Answer)
4.8/5
(33)

TABLE 13-3 The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below. Student CoopJobs JobOffer 1 1 4 2 2 6 3 1 3 4 0 1 -Referring to Table 13-3, the director of cooperative education wanted to test the hypothesis that the population slope was equal to 0. The value of the test statistic is ________.

(Short Answer)
4.9/5
(41)

TABLE 13-3 The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below. Student CoopJobs JobOffer 1 1 4 2 2 6 3 1 3 4 0 1 -Referring to Table 13-3, suppose the director of cooperative education wants to construct two 95% confidence interval estimates. One is for the mean number of job offers received by students who have had exactly one cooperative education job and one for people who have had two. The confidence interval for students who have had one cooperative education job would be the wider of the two intervals.

(True/False)
4.8/5
(38)

TABLE 13-9 It is believed that, the average numbers of hours spent studying per day (HOURS) during undergraduate education should have a positive linear relationship with the starting salary (SALARY, measured in thousands of dollars per month) after graduation. Given below is the Excel output for predicting starting salary (Y) using number of hours spent studying per day (X) for a sample of 51 students. NOTE: Only partial output is shown. Regression Statistics Multiple R 0.8857 R Square 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704 Observations 51  ANOVA \text { ANOVA } df SS MS F Significance F Regression 1 335.0472 335.0473 178.3859 Residual 1.8782 Total 50 427.0798 Standard Coefficients Error t Stat P-value Lower 95\% Upper 95\% Intercept -1.8940 0.4018 -4.7134 2.051-05 -2.7015 -1.0865 Hours 0.9795 0.0733 13.3561 5.944-18 0.8321 1.1269 Note: 2.051E - 05 = 2.051*10⁻⁰⁵ and 5.944E - 18 = 5.944*10⁻¹⁸. -Referring to Table 13-9, the value of the measured t test statistic to test whether mean SALARY depends linearly on HOURS is

(Multiple Choice)
4.9/5
(43)

TB1604_00for services rendered to local companies. One independent variable used to predict service charges to a company is the company's sales revenue (X) TB1604_00for services rendered to local companies. One independent variable used to predict service charges to a company is the company's sales revenue (X) measured in millions of dollars. Data for 21 companies who use the bank's services were used to fit the model: Yᵢ = β₀ + β₁Xi + Eᵢ The results of the simple linear regression are provided below.   Y = - 2,700 + 20 X , S Y X = 65 \text {, two-tail } p \text {-value } = 0.034 \text { (for testing } \beta _ { 1 } \text { ) }  -Referring to Table 13-1, a 95% confidence interval for β₁ is (15, 30). Interpret the interval. measured in millions of dollars. Data for 21 companies who use the bank's services were used to fit the model: Yᵢ = β₀ + β₁Xi + Eᵢ The results of the simple linear regression are provided below. Y=2,700+20X,SYX=65, two-tail p-value =0.034 (for testing β1 ) Y = - 2,700 + 20 X , S Y X = 65 \text {, two-tail } p \text {-value } = 0.034 \text { (for testing } \beta _ { 1 } \text { ) } -Referring to Table 13-1, a 95% confidence interval for β₁ is (15, 30). Interpret the interval.

(Multiple Choice)
4.8/5
(32)

TABLE 13-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results: Customers Sales (Thousands of Dollars) 907 11.20 926 11.05 713 8.21 741 9.21 780 9.42 898 10.08 510 6.73 529 7.02 460 6.12 872 9.52 650 7.53 603 7.25 -Referring to Table 13-10, which is the correct null hypothesis for testing whether the number of customers who make a purchase affects weekly sales?

(Multiple Choice)
4.7/5
(34)

TABLE 13-3 The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below. Student CoopJobs JobOffer 1 1 4 2 2 6 3 1 3 4 0 1 -Referring to Table 13-3, the director of cooperative education wanted to test the hypothesis that the population slope was equal to 0. The denominator of the test statistic is Sb1S_{b_{1}} . The value of Sb1S_{b_{1}} in this sample is ________.

(Short Answer)
4.9/5
(28)

TABLE 13-4 The managers of a brokerage firm are interested in finding out if the number of new clients a broker brings into the firm affects the sales generated by the broker. They sample 12 brokers and determine the number of new clients they have enrolled in the last year and their sales amounts in thousands of dollars. These data are presented in the table that follows. 1 27 52 2 11 37 3 42 64 4 33 55 5 15 29 6 15 34 7 25 58 8 36 59 9 28 44 10 30 48 11 17 31 12 22 38 -Referring to Table 13-4, the managers of the brokerage firm wanted to test the hypothesis that the population slope was equal to 0. The p-value of the test is ________.

(Essay)
4.9/5
(37)

TABLE 13-3 The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below. Student CoopJobs JobOffer 1 1 4 2 2 6 3 1 3 4 0 1 -Referring to Table 13-3, suppose the director of cooperative education wants to construct a 95% prediction interval for the number of job offers received by a student who has had exactly two cooperative education jobs. The prediction interval is from ________ to ________.

(Short Answer)
4.7/5
(32)

TABLE 13-12 The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output: Regression Statistics Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square Standard 0.3342 Error Observations 30  ANOVA \text { ANOVA } df SS MS F Significance F Regression 1 25.9438 25.9438 232.2200 4.3946-15 Residual 28 3.1282 0.1117 Total 29 29.072 Coefficients Standard Error t Stat P -value Lower 95\% Upper 95\% Intercept 0.4024 0.1236 3.2559 0.0030 0.1492 0.6555 Applications Recorded 0.0126 0.0008 15.2388 4.3946-15 0.0109 0.0143 Note: 4.3946E-15 is 4.3946*10^-15  TABLE 13-12 The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.9447 \\ \hline \text { R Square } & 0.8924 \\ \hline \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & \\ \text { Observations } & 30 \\ \hline \end{array}    \text { ANOVA }   \begin{array} { | l | r | r | r | r | r | r | }  \hline &   { \text { df } } &   { \text { SS } } &MS&F& { \text { Significance } } \\ & & & & & F \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \hline \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \hline \text { Total } & 29 & 29.072 & & & & \\ \hline \end{array}    \begin{array} { | l | r | r | r | r | r | r | }  \hline & \text { Coefficients } & \begin{array} { c }  \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \begin{array} { l }  \text { Applications } \\ \text { Recorded } \end{array} & 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm { E } - 15 & 0.0109 & 0.0143 \\ \hline \end{array}     Note: 4.3946E-15 is 4.3946*10^-15        -Referring to Table 13-12, what are the critical values of the Durbin-Watson test statistic using the 5% level of significance to test for evidence of positive autocorrelation?  TABLE 13-12 The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Below is the regression output:   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.9447 \\ \hline \text { R Square } & 0.8924 \\ \hline \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & \\ \text { Observations } & 30 \\ \hline \end{array}    \text { ANOVA }   \begin{array} { | l | r | r | r | r | r | r | }  \hline &   { \text { df } } &   { \text { SS } } &MS&F& { \text { Significance } } \\ & & & & & F \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \hline \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \hline \text { Total } & 29 & 29.072 & & & & \\ \hline \end{array}    \begin{array} { | l | r | r | r | r | r | r | }  \hline & \text { Coefficients } & \begin{array} { c }  \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \begin{array} { l }  \text { Applications } \\ \text { Recorded } \end{array} & 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm { E } - 15 & 0.0109 & 0.0143 \\ \hline \end{array}     Note: 4.3946E-15 is 4.3946*10^-15        -Referring to Table 13-12, what are the critical values of the Durbin-Watson test statistic using the 5% level of significance to test for evidence of positive autocorrelation? -Referring to Table 13-12, what are the critical values of the Durbin-Watson test statistic using the 5% level of significance to test for evidence of positive autocorrelation?

(Short Answer)
4.8/5
(41)

The slope (b₁)represents

(Multiple Choice)
4.9/5
(27)

TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed: Regression Statistics Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000  ANOVA \text { ANOVA } df SS MS F Significance F Regression 1 171062.9193 171062.9193 86.4759 0.0000 Residual 28 55388.4309 1978.1582 Total 29 226451.3503 Coefficients Standard Error t Stat P-value Lower 95\% \multicolumn 1 r Upper 95\% Intercept -95.0614 26.9183 -3.5315 0.0015 -150.2009 -39.9218 Download 3.7297 0.4011 9.2992 0.0000 2.9082 4.5513  TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{lrrrrrr} \hline & \text { df } & {\text { SS }} & {\text { MS }} & \text { F } & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \multicolumn{1}{r}{\text { Upper 95\% }} \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}           -Referring to Table 13-11, what is the value of the test statistic for testing whether there is a linear relationship between revenue and the number of downloads?  TABLE 13-11 A computer software developer would like to use the number of downloads (in thousands) for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars) he can make on the full version of the new shareware. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}    \text { ANOVA }   \begin{array}{lrrrrrr} \hline & \text { df } & {\text { SS }} & {\text { MS }} & \text { F } & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \multicolumn{1}{r}{\text { Upper 95\% }} \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}           -Referring to Table 13-11, what is the value of the test statistic for testing whether there is a linear relationship between revenue and the number of downloads? -Referring to Table 13-11, what is the value of the test statistic for testing whether there is a linear relationship between revenue and the number of downloads?

(Short Answer)
4.9/5
(33)

TABLE 13-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars) for individual stores based on the number of customers who made purchases. A random sample of 12 stores yields the following results: Customers Sales (Thousands of Dollars) 907 11.20 926 11.05 713 8.21 741 9.21 780 9.42 898 10.08 510 6.73 529 7.02 460 6.12 872 9.52 650 7.53 603 7.25 -Referring to Table 13-10, what is the value of the coefficient of correlation?

(Short Answer)
4.8/5
(35)

TABLE 13-3 The director of cooperative education at a state college wants to examine the effect of cooperative education job experience on marketability in the work place. She takes a random sample of 4 students. For these 4, she finds out how many times each had a cooperative education job and how many job offers they received upon graduation. These data are presented in the table below. Student CoopJobs JobOffer 1 1 4 2 2 6 3 1 3 4 0 1 -Referring to Table 13-3, suppose the director of cooperative education wants to construct a 95% confidence-interval estimate for the mean number of job offers received by students who have had exactly one cooperative education job. The t critical value she would use is ________.

(Short Answer)
4.9/5
(28)
Showing 141 - 160 of 213
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)