Exam 35: Diffraction and Interference
Exam 1: Getting Started24 Questions
Exam 2: One-Dimensional Motion66 Questions
Exam 3: Vectors47 Questions
Exam 4: Two- and Three-Dimensional Motion79 Questions
Exam 5: Newtons Laws of Motion103 Questions
Exam 6: Applications of Newtons Laws of Motion64 Questions
Exam 7: Gravity47 Questions
Exam 8: Conservation of Energy31 Questions
Exam 9: Energy in Nonisolated Systems41 Questions
Exam 10: Systems of Particles and Conservation of Momentum25 Questions
Exam 11: Collisions43 Questions
Exam 12: Rotation I: Kinematics and Dynamics65 Questions
Exam 13: Rotation II: a Conservation Approach42 Questions
Exam 14: Static Equilibrium, Elasticity, and Fracture34 Questions
Exam 15: Fluids53 Questions
Exam 16: Oscillations41 Questions
Exam 17: Traveling Waves46 Questions
Exam 18: Superposition and Standing Waves56 Questions
Exam 19: Temperature, Thermal Expansion, and Gas Laws45 Questions
Exam 20: Kinetic Theory of Gases19 Questions
Exam 21: Heat and the First Law of Thermodynamics35 Questions
Exam 22: Entropy and the Second Law of Thermodynamics55 Questions
Exam 23: Electric Forces34 Questions
Exam 24: Electric Fields48 Questions
Exam 25: Gausss Law80 Questions
Exam 26: Electric Potential96 Questions
Exam 27: Capacitors and Batteries63 Questions
Exam 28: Current and Resistance32 Questions
Exam 29: Direct Current Dc Circuits84 Questions
Exam 30: Magnetic Fields and Forces75 Questions
Exam 31: Gausss Law for Magnetism and Amperes Law87 Questions
Exam 32: Faradays Law of Induction56 Questions
Exam 33: Inductors and Ac Circuits86 Questions
Exam 34: Maxwells Equations and Electromagnetic Waves41 Questions
Exam 35: Diffraction and Interference48 Questions
Exam 36: Applications of the Wave Model31 Questions
Exam 37: Reflection and Images Formed by Reflection25 Questions
Exam 38: Refraction and Images Formed by Refraction54 Questions
Exam 39: Relativity45 Questions
Select questions type
The figures below represent interference fringes. The distances from the screen to the slits is the same for each figure, and the planes of the screen and the slits are parallel. In each figure the spacing d between the slits is the same. Which figure(s) represent(s) slits illuminated with light of the shortest wavelength λ? The white spaces represent the interference maxima. 

(Multiple Choice)
4.9/5
(37)
The electric fields arriving at a point P from three coherent sources are described by E1 = E0 sin ωt, E2 = E0 sin (ωt + π/4) and E3 = E0 sin (ωt + π/2). Assume the resultant field is represented by Ep = ER sin (ωt + α). The amplitude of the resultant wave at P is
(Multiple Choice)
4.8/5
(38)
A planar cross section through two spherical waves emanating from the sources S1 and S2 in the plane is shown in the figure. S1 and S2 are in phase. The black circles are one and two wavelengths from their respective sources. The lighter circles are one half and one and a half wavelengths distant from their respective sources. If the waves shown arriving at P2 both arrive with amplitude A, the resultant amplitude at point P2 is 

(Multiple Choice)
4.9/5
(32)
Each pattern shown below would appear on a screen when monochromatic light of wavelength λ first passes through a narrow slit of width a and then strikes a screen. The darkest areas on the page represent the brightest areas on the screen. In which case does the slit have the greatest width?
(Multiple Choice)
4.8/5
(39)
A laser beam (λ = 694 nm) is incident on two slits 0.100 mm apart. Approximately how far apart (in m) will the bright interference fringes be on the screen 5.00 m from the double slits?
(Multiple Choice)
4.9/5
(25)
Light from a helium-neon laser (λ = 632.8 nm) is incident upon a 0.200-mm-wide slit. Find the total width of the central maximum 2.00 m from the slit.
(Short Answer)
4.9/5
(34)
A planar cross section through two spherical waves emanating from the sources S1 and S2 in the plane is shown in the figure. The black circles are one and two wavelengths from their respective sources. The lighter circles are one-half and one-and-a-half wavelengths distant from their respective sources. If the phase at S1 and S2 is zero at this instant, and the waves shown arriving at P2 both arrive with amplitude A, the difference in phase angle at point P2 (in radians) is

(Multiple Choice)
4.8/5
(37)
In a double-slit experiment, the distance between the slits is 0.2 mm and the distance to the screen is 100 cm. What is the phase difference (in degrees) between the waves from the two slits arriving at a point 5 mm from the central maximum when the wavelength is 400 nm? (Convert your result so the angle is between 0 and 360°.)
(Multiple Choice)
4.9/5
(34)
Showing 41 - 48 of 48
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)