Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the sum of the following infinite geometric series. 10+98110+729100- 10 + 9 - \frac { 81 } { 10 } + \frac { 729 } { 100 } - \ldots

(Multiple Choice)
4.8/5
(42)

Determine whether the sequence is geometric. If so, find the common ratio.

(Multiple Choice)
4.7/5
(36)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 12+14+16++12n>n2\frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 4 } } + \frac { 1 } { \sqrt { 6 } } + \ldots + \frac { 1 } { \sqrt { 2 n } } > \frac { \sqrt { n } } { \sqrt { 2 } }

(Essay)
4.9/5
(34)

How many 3 -digit numbers can be formed if the leading digit cannot be zero and repeats are not allowed?

(Multiple Choice)
4.9/5
(40)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 119+138+157++119n>n19\frac { 1 } { \sqrt { 19 } } + \frac { 1 } { \sqrt { 38 } } + \frac { 1 } { \sqrt { 57 } } + \ldots + \frac { 1 } { \sqrt { 19 n } } > \frac { \sqrt { n } } { \sqrt { 19 } }

(Essay)
4.8/5
(38)

Write an expression for the apparent nn th term of the sequence. (Assume that nn begins with 1.) 5,2,1,4,7- 5 , - 2,1,4,7

(Multiple Choice)
4.8/5
(25)

Find a quadratic model for the sequence with the indicated terms. a0=7,a2=3,a5=12a _ { 0 } = 7 , a _ { 2 } = 3 , a _ { 5 } = 12

(Multiple Choice)
4.9/5
(41)

Find the indicated nn th term of the geometric sequence. 4th term: 4,12,36,4 , - 12,36 , \ldots

(Multiple Choice)
4.8/5
(42)

W Write the nn th term of the geometric sequence as a function of nn . a1=4,ak+1=2aka _ { 1 } = 4 , a _ { k + 1 } = 2 a _ { k }

(Multiple Choice)
4.8/5
(29)

Determine the sample space for the experiment. Four coins are flipped and the number of heads observed is recorded.

(Multiple Choice)
4.8/5
(41)

Write the first five terms of the geometric sequence. a1=4,r=15a _ { 1 } = 4 , r = - \frac { 1 } { 5 }

(Multiple Choice)
4.9/5
(35)

Solve for nn . 42n1P5=n+1P642 \cdot { } _ { n - 1 } P _ { 5 } = { } _ { n + 1 } P _ { 6 }

(Multiple Choice)
4.8/5
(29)

Determine the sample space for the experiment. Three marbles are selected from marbles labeled A through D where the marbles Are not replaced and the order of selection does not matter.

(Multiple Choice)
4.8/5
(42)

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that nn begins with 1.) an=(16)na _ { n } = - \left( \frac { 1 } { 6 } \right) ^ { n }

(Multiple Choice)
4.8/5
(28)

Find the sum of the following infinite geometric series. 15+1419615+2744225- 15 + 14 - \frac { 196 } { 15 } + \frac { 2744 } { 225 } - \ldots

(Multiple Choice)
5.0/5
(34)

Find the number of distinguishable permutations of the group of letters. E,S,T,I,M,A,T,E\mathrm { E } , \mathrm { S } , \mathrm { T } , \mathrm { I } , \mathrm { M } , \mathrm { A } , \mathrm { T } , \mathrm { E }

(Multiple Choice)
4.8/5
(38)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 123+146+169++123n>n23\frac { 1 } { \sqrt { 23 } } + \frac { 1 } { \sqrt { 46 } } + \frac { 1 } { \sqrt { 69 } } + \ldots + \frac { 1 } { \sqrt { 23 n } } > \frac { \sqrt { n } } { \sqrt { 23 } }

(Essay)
4.8/5
(34)

Find the indicated term of the sequence. =(-1(5n-1) =\square

(Multiple Choice)
4.8/5
(31)

Find Pk+1P _ { k + 1 } for the given PkP _ { k } . Pk=7+13+19++[6(k1)+1]+[6k+1]P _ { k } = 7 + 13 + 19 + \ldots + [ 6 ( k - 1 ) + 1 ] + [ 6 k + 1 ]

(Multiple Choice)
4.7/5
(40)

Use mathematical induction to prove the following equality. ln(2nx1x2xn)=ln(2x1)+ln(2x2)++ln(2xn), where x1>0,x2>0,,xn>0\ln \left( 2 ^ { n } x _ { 1 } x _ { 2 } \ldots x _ { n } \right) = \ln \left( 2 x _ { 1 } \right) + \ln \left( 2 x _ { 2 } \right) + \ldots + \ln \left( 2 x _ { n } \right) \text {, where } x _ { 1 } > 0 , x _ { 2 } > 0 , \ldots , x _ { n } > 0

(Essay)
4.9/5
(42)
Showing 21 - 40 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)