Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Calculate the binomial coefficient: (116)\left( \begin{array} { c } 11 \\ 6 \end{array} \right)

(Multiple Choice)
4.9/5
(38)

Find a formula for the nthn t h term of the following geometric sequence, then find the 4 th term of the sequence. 7,28,112,7,28,112 , \ldots

(Multiple Choice)
4.9/5
(32)

Use mathematical induction to prove the following for every positive integer nn . i=1n9i(i+1)(i+2)=9n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 9 } { i ( i + 1 ) ( i + 2 ) } = \frac { 9 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.8/5
(30)

Find the probability for the experiment of selecting one card from a standard deck of 52 playing cards such that the card is not a red face card.

(Multiple Choice)
5.0/5
(42)

Find the coefficient aa of the term in the expansion of the binomial. Binomial Term (2x-5y a

(Multiple Choice)
4.8/5
(45)

Find the sum. k=131k2+5\sum _ { k = 1 } ^ { 3 } \frac { 1 } { k ^ { 2 } + 5 }

(Multiple Choice)
4.8/5
(32)

Find the specified nn th term in the expansion of the binomial. (Write the expansion in descending powers of xx .) (2x+3y)6,n=3( 2 x + 3 y ) ^ { 6 } , n = 3

(Multiple Choice)
4.7/5
(39)

Use the Binomial Theorem to expand and simplify the expression. (w2)5( w - 2 ) ^ { 5 }

(Multiple Choice)
4.9/5
(35)

Find a formula for ana _ { n } for the arithmetic sequence. a3=19,a13=99a _ { 3 } = 19 , a _ { 13 } = 99

(Multiple Choice)
5.0/5
(37)

Write an expression for the apparent nn th term of the sequence. (Assume that nn begins with 1.) 4,2,0,2,4- 4 , - 2,0,2,4

(Multiple Choice)
4.9/5
(37)

You are given the probability that an event will happen. Find the probability that the event will not happen. P(E)=0.33P ( E ) = 0.33

(Multiple Choice)
4.8/5
(40)

Find the sum of the integers from - 1 to 27 .

(Multiple Choice)
4.8/5
(32)

Use mathematical induction to prove the following for every positive integer nn . i=1n36i5=3n2(n+1)2(2n2+2n1)\sum _ { i = 1 } ^ { n } 36 i ^ { 5 } = 3 n ^ { 2 } ( n + 1 ) ^ { 2 } \left( 2 n ^ { 2 } + 2 n - 1 \right)

(Essay)
4.8/5
(39)

Find the sum. i=14(i4)\sum _ { i = 1 } ^ { 4 } ( - i - 4 )

(Multiple Choice)
4.8/5
(32)

Determine whether the sequence is geometric. If so, find the common ratio. A) 3,6,12,24,3,6,12,24 , \ldots

(Multiple Choice)
4.8/5
(30)

Find the coefficient aa of the term in the expansion of the binomial. Binomial Term (4x+3y a

(Multiple Choice)
4.9/5
(37)

Find the indicated nn th partial sum of the arithmetic sequence. 3.6,5.7,7.8,9.9,,n=603.6,5.7,7.8,9.9 , \ldots , n = 60

(Multiple Choice)
4.8/5
(36)

Find the indicated nn th term of the geometric sequence. 5 th term: a3=316,a9=365,536a _ { 3 } = - \frac { 3 } { 16 } , a _ { 9 } = - \frac { 3 } { 65,536 }

(Multiple Choice)
4.8/5
(30)

Find the indicated partial sum of the series. i=15(13)i\sum _ { i = 1 } ^ { \infty } 5 \left( - \frac { 1 } { 3 } \right) ^ { i } fourth partial sum

(Multiple Choice)
4.7/5
(32)

Use mathematical induction to prove the property for all positive integers nn . [an]3=a3n\left[ a ^ { n } \right] ^ { 3 } = a ^ { 3 n }

(Essay)
4.8/5
(30)
Showing 61 - 80 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)