Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Expand the binomial by using Pascal's triangle to determine the coefficients. (5x4y)6( 5 x - 4 y ) ^ { 6 }

(Multiple Choice)
4.8/5
(42)

Use mathematical induction to prove the following for every positive integer nn . i=1n5(2i1)(2i+1)=5n2n+1\sum _ { i = 1 } ^ { n } \frac { 5 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 5 n } { 2 n + 1 }

(Essay)
4.9/5
(34)

Use mathematical induction to prove that 80 is a factor of 28n+2+162 ^ { 8 n + 2 } + 16 6 for all positive n.

(Essay)
4.7/5
(42)

Find a formula for the nth term of the following geometric sequence, then find the 4th term of the sequence. 9,36,144,9,36,144 , \ldots

(Multiple Choice)
4.9/5
(40)

Find the sum of the finite geometric sequence. n=15(16)n1\sum _ { n = 1 } ^ { 5 } - \left( - \frac { 1 } { 6 } \right) ^ { n - 1 }

(Multiple Choice)
4.8/5
(39)

Use mathematical induction to prove the following for every positive integer nn . 1+6+36+216++6n1=6n151 + 6 + 36 + 216 + \ldots + 6 ^ { n - 1 } = \frac { 6 ^ { n } - 1 } { 5 }

(Essay)
4.8/5
(34)

Use mathematical induction to prove the following for every positive integer n. i=1n17i(i+1)(i+2)=17n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 17 } { i ( i + 1 ) ( i + 2 ) } = \frac { 17 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.8/5
(41)

Use mathematical induction to prove the formula for every positive integer nn . Show all your work. 7+10+13+16++(3n+4)=n2(3n+11)7 + 10 + 13 + 16 + \ldots + ( 3 n + 4 ) = \frac { n } { 2 } ( 3 n + 11 )

(Essay)
5.0/5
(45)

Determine whether the sequence is geometric. If so, find the common ratio. 1,2,4,8,- 1 , - 2 , - 4 , - 8 , \ldots

(Multiple Choice)
4.8/5
(36)

Find the indicated nn th term of the geometric sequence. 6th term: a5=481,a8=42187a _ { 5 } = \frac { 4 } { 81 } , a _ { 8 } = \frac { 4 } { 2187 }

(Multiple Choice)
4.9/5
(42)

Use the Binomial Theorem to expand the complex number. Simplify your result. (2+5i)4( - 2 + 5 i ) ^ { 4 }

(Multiple Choice)
4.8/5
(27)

Determine whether the sequence is geometric. If so, find the common ratio. 1,3,7,11,- 1,3,7,11 , \ldots

(Multiple Choice)
4.8/5
(30)

Find the sum of the following infinite geometric series. 14+1316914+2197196- 14 + 13 - \frac { 169 } { 14 } + \frac { 2197 } { 196 } - \ldots

(Multiple Choice)
4.9/5
(37)

Find a formula for ana _ { n } for the arithmetic sequence. a4=10,a8=34a _ { 4 } = 10 , a _ { 8 } = 34

(Multiple Choice)
4.8/5
(33)

Use mathematical induction to prove the following for every positive integer nn . i=1n15(2i1)(2i+1)=15n2n+1\sum _ { i = 1 } ^ { n } \frac { 15 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 15 n } { 2 n + 1 }

(Essay)
4.9/5
(44)

Find the indicated sum. n=18n4\sum _ { n = 1 } ^ { 8 } n ^ { 4 }

(Multiple Choice)
4.9/5
(37)

Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that nn begins with 1.) an=6+4na _ { n } = - 6 + 4 n

(Multiple Choice)
4.9/5
(40)

Find the probability for the experiment of tossing a coin four times and getting at least two heads. Use the sample space Sequals HHHH HHHT HHTH HTHH THHH HHTT HTHT THHT THTH HTTH TTHH TTH TTHT THTT HTTT TTTT

(Multiple Choice)
4.9/5
(35)

Use the Binomial Theorem to expand and simplify the expression. (x3/45)4\left( x ^ { 3 / 4 } - 5 \right) ^ { 4 }

(Multiple Choice)
4.8/5
(35)
Showing 101 - 119 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)