Exam 10: Analytic Geometry in Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the vector z\mathbf { z } , given u=4,9,8,v=5,4,4\mathbf { u } = \langle - 4,9,8 \rangle , \mathbf { v } = \langle 5,4,4 \rangle , and w=3,23,4\mathbf { w } = \langle - 3,23,4 \rangle . 3uv+2z=w3 \mathbf { u } - \mathbf { v } + 2 \mathbf { z } = \mathbf { w }

(Multiple Choice)
4.8/5
(39)

Find the angle, in degrees, between two adjacent sides of the pyramid shown below. Round to the nearest tenth of a degree. [Note: The base of the pyramid is not considered a side.] Find the angle, in degrees, between two adjacent sides of the pyramid shown below. Round to the nearest tenth of a degree. [Note: The base of the pyramid is not considered a side.]

(Multiple Choice)
4.9/5
(40)

Find a set of parametric equations for the line through the point and parallel to the specified vector. Show all your work. (1,5,9)( - 1 , - 5,9 ) , parallel to 7,6,3\langle - 7,6 , - 3 \rangle

(Essay)
4.8/5
(41)

Determine the values of cc such that cu=6\| c \mathbf { u } \| = 6 , where u=3i+2j5k\mathbf { u } = - 3 \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } .

(Multiple Choice)
4.7/5
(38)

Find the area of the parallelogram that has the vectors as adjacent sides. u=4,2,5,v=4,1,2\mathbf { u } = \langle 4,2 , - 5 \rangle , \mathbf { v } = \langle - 4,1,2 \rangle

(Multiple Choice)
4.8/5
(33)

Find the area of the parallelogram formed by the points A(2,3,5),B(7,2,7)A ( 2 , - 3,5 ) , B ( 7 , - 2,7 ) , C(3,2,11)C ( 3 , - 2,11 ) , and D(8,1,13)D ( 8 , - 1,13 ) .

(Multiple Choice)
4.8/5
(29)

Find the magnitude of the vector v\mathbf { v } . v=0,5,3\mathbf { v } = \langle 0 , - 5 , - 3 \rangle

(Multiple Choice)
4.7/5
(30)

Find symmetric equations for the line through the point and parallel to the specified vector. Show all your work. (5,3,8)( - 5,3,8 ) , parallel to 4,5,7\langle - 4,5,7 \rangle

(Essay)
4.8/5
(31)

Find a unit vector orthogonal to 3i+2j3 \mathbf { i } + 2 \mathbf { j } and j+5k\mathbf { j } + 5 \mathbf { k } .

(Multiple Choice)
4.7/5
(42)

Find the general form of the equation of the plane passing through the three points. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (5,5,6),(6,1,4),(2,5,5)( 5 , - 5 , - 6 ) , ( 6 , - 1,4 ) , ( - 2 , - 5,5 )

(Multiple Choice)
4.8/5
(40)

Find the general form of the equation of the plane passing through the three points. [Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (5,2,1),(3,3,2),(4,4,1)( 5,2 , - 1 ) , ( 3,3,2 ) , ( 4,4,1 )

(Multiple Choice)
4.9/5
(42)

Find the magnitude of the vector described below. Initial point: (0,6,4)( 0 , - 6 , - 4 ) Terminal point: (1,5,5)( - 1,5,5 )

(Multiple Choice)
4.8/5
(35)

Find the angle between the vectors u\mathbf { u } and v\mathbf { v } . Express your answer in degrees and round to the nearest tenth of a degree. u=6i+9j+2k,v=3i7j4k\mathbf { u } = - 6 \mathbf { i } + 9 \mathbf { j } + 2 \mathbf { k } , \mathbf { v } = - 3 \mathbf { i } - 7 \mathbf { j } - 4 \mathbf { k }

(Multiple Choice)
4.8/5
(40)

Determine the values of cc such that cu=2\| c \mathbf { u } \| = 2 , where u=3i4j+2k\mathbf { u } = 3 \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k } .

(Multiple Choice)
4.8/5
(23)

For the points A(1,2,1),B(2,7,4),C(1,6,5),D(2,11,0)A ( 1 , - 2 , - 1 ) , B ( 2 , - 7,4 ) , C ( 1 , - 6 , - 5 ) , D ( 2 , - 11,0 ) : a. Verify that the points are vertices of a parallelogram. Show all work. b. Find the area of the parallelogram. Show all work. c. Determine whether the parallelogram is a rectangle.

(Essay)
4.8/5
(26)

Find u×v\mathbf { u } \times \mathbf { v } . u=7,5,1,v=3,4,8\mathbf { u } = \langle 7 , - 5,1 \rangle , \mathbf { v } = \langle - 3,4,8 \rangle

(Multiple Choice)
4.9/5
(26)

Find the volume of the parallelpiped with the given vertices. A(3,8,6),B(7,0,2),C(12,3,3),D(16,5,11)A ( - 3 , - 8 , - 6 ) , B ( - 7,0,2 ) , C ( - 12 , - 3,3 ) , D ( - 16,5,11 ) , E(9,7,2),F(13,1,10),G(18,2,11),H(22,6,19)E ( - 9 , - 7,2 ) , F ( - 13,1,10 ) , G ( - 18 , - 2,11 ) , H ( - 22,6,19 )

(Multiple Choice)
4.9/5
(37)

Find a set of parametric equations for the line that passes through the given points. Show all your work. (4,7,2),(7,1,5)( 4 , - 7,2 ) , ( - 7 , - 1 , - 5 )

(Essay)
4.8/5
(33)

D Determine whether u\mathbf { u } and v\mathbf { v } are parallel, orthogonal, or neither. u=5,6,8,v=10,12,16\mathbf { u } = \langle 5,6 , - 8 \rangle , \mathbf { v } = \langle 10,12 , - 16 \rangle

(Multiple Choice)
4.8/5
(42)

Find u×v\mathbf { u } \times \mathbf { v } . u=7i3j9k,v=i+4j+7k\mathbf { u } = - 7 \mathbf { i } - 3 \mathbf { j } - 9 \mathbf { k } , \mathbf { v } = \mathbf { i } + 4 \mathbf { j } + 7 \mathbf { k }

(Multiple Choice)
4.9/5
(37)
Showing 81 - 100 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)