Exam 10: Analytic Geometry in Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the distance between the points. (1,5,5),(2,6,1)( 1,5,5 ) , ( - 2,6 , - 1 )

(Multiple Choice)
4.8/5
(22)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line. x=2+3tx = 2 + 3 t (5,6,4),y=3+4t( 5 , - 6 , - 4 ) , \quad y = - 3 + 4 t z=6+6tz = - 6 + 6 t

(Multiple Choice)
4.8/5
(30)

Find symmetric equations for the line through the point and parallel to the specified vector. Show all your work. (1,8,6)( 1,8,6 ) , parallel to 9,6,5\langle 9 , - 6,5 \rangle

(Essay)
4.8/5
(40)

Find a unit vector orthogonal to u\mathbf { u } and v\mathbf { v } . u=\mathbf { u } = leadcoeff(a)i coeff(b)jcoeff(c)k,v=\operatorname { coeff } ( b ) \mathbf { j } \operatorname { coeff } ( \mathrm { c } ) \mathbf { k } , \mathbf { v } = leadcoeff(d) icoeff(f)jcoeff(g)k\mathbf { i } \operatorname { coeff } ( \mathrm { f } ) \mathbf { j } \operatorname { coeff } ( \mathrm { g } ) \mathbf { k }

(Multiple Choice)
4.8/5
(39)

Find the dot product of u\mathbf { u } and v\mathbf { v } . u=3,2,4,v=4,5,7\mathbf { u } = \langle - 3 , - 2,4 \rangle , \mathbf { v } = \langle - 4 , - 5 , - 7 \rangle

(Multiple Choice)
5.0/5
(40)

Find the distance between the point and the plane. (2,1,4)( - 2 , - 1 , - 4 ) 3x2yz=1- 3 x - 2 y - z = 1

(Multiple Choice)
4.8/5
(31)

Write the component form of the vector described below. Initial point: (1,5,6)( - 1 , - 5 , - 6 ) Terminal point: (4,2,4)( 4 , - 2 , - 4 )

(Multiple Choice)
4.8/5
(35)

Find the volume of the parallelpiped with the given vertices. A(0,5,3),B(3,1,4),C(7,3,1),D(10,1,8)A ( 0 , - 5,3 ) , B ( 3 , - 1 , - 4 ) , C ( 7 , - 3 , - 1 ) , D ( 10,1 , - 8 ) , E(3,13,6),F(0,9,1),G(4,11,2),H(7,7,5)E ( - 3 , - 13,6 ) , F ( 0 , - 9 , - 1 ) , G ( 4 , - 11,2 ) , H ( 7 , - 7 , - 5 )

(Multiple Choice)
4.9/5
(45)

Find the area of the parallelogram that has the vectors as adjacent sides. u=4,1,4,v=2,3,0\mathbf { u } = \langle 4 , - 1,4 \rangle , \mathbf { v } = \langle 2 , - 3,0 \rangle

(Multiple Choice)
4.8/5
(34)

Find the midpoint of the line segment joining the points. (2,7,3),(3,4,6)( - 2 , - 7,3 ) , ( - 3 , - 4 , - 6 )

(Multiple Choice)
4.8/5
(30)

Find the magnitude of the vector v\mathbf { v } . v=4,0,8\mathbf { v } = \langle - 4,0 , - 8 \rangle

(Multiple Choice)
4.9/5
(37)

Find the standard form of the equation of the sphere with the given characteristics. Endpoints of a diameter: (8,4,2),(8,2,6)( - 8,4 , - 2 ) , ( - 8 , - 2,6 )

(Multiple Choice)
5.0/5
(37)

Find a set of symmetric equations of the line that passes through the points (5,0,5)( 5,0,5 ) and (7,8,6)( 7,8 , - 6 ) .

(Multiple Choice)
4.7/5
(41)

Determine whether u\mathbf { u } and v\mathbf { v } are parallel, orthogonal, or neither. u=6,5,2,v=30,25,10\mathbf { u } = \langle 6 , - 5,2 \rangle , \mathbf { v } = \langle 30 , - 25,10 \rangle

(Multiple Choice)
4.9/5
(31)

The weight of a crate is 300 newtons. Find the tension in each of the supporting cables shown in the figure. The coordinates of the points A,B,CA , B , C , and DD are given below the figure. Round to the nearest newton.  The weight of a crate is 300 newtons. Find the tension in each of the supporting cables shown in the figure. The coordinates of the points  A , B , C , and  D  are given below the figure. Round to the nearest newton.    [Figure not necessarily to scale.] point  A = ( 0,0 , - 130 ) , point  B = ( 90,0,0 ) , point  C = ( - 40,40,0 ) , point  D = ( 0 , - 180,0 ) [Figure not necessarily to scale.] point A=(0,0,130)A = ( 0,0 , - 130 ) , point B=(90,0,0)B = ( 90,0,0 ) , point C=(40,40,0)C = ( - 40,40,0 ) , point D=(0,180,0)D = ( 0 , - 180,0 )

(Multiple Choice)
5.0/5
(38)

Determine the values of cc such that cu=6\| c \mathbf { u } \| = 6 , where u=6i+5j+5k\mathbf { u } = 6 \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } .

(Multiple Choice)
4.8/5
(29)

Find symmetric equations for the line through the point and parallel to the specified line. Show all your work. x=13tx=-1-3 t (6,2,5), parallel to y=68t(-6,-2,5) \text {, parallel to } y=6-8 t z=43tz=4-3 t

(Essay)
4.8/5
(32)

Find the vector z\mathbf { z } , given u=3,3,8,v=7,5,2\mathbf { u } = \langle 3 , - 3,8 \rangle , \mathbf { v } = \langle - 7 , - 5,2 \rangle , and w=8,24,18\mathbf { w } = \langle 8 , - 24,18 \rangle . u+3v4z=w- \mathbf { u } + 3 \mathbf { v } - 4 \mathbf { z } = \mathbf { w }

(Multiple Choice)
4.8/5
(36)

Find u×v\mathbf { u } \times \mathbf { v } . u=3,7,1,v=9,4,4\mathbf { u } = \langle 3 , - 7 , - 1 \rangle , \mathbf { v } = \langle - 9,4 , - 4 \rangle

(Multiple Choice)
4.8/5
(27)

Find symmetric equations for the line through the point and parallel to the specified line. Show all your work. x=89tx = - 8 - 9 t (5,9,1), parallel to y=55t(5,-9,-1) \text {, parallel to } y=5-5 t z = - 8 + 3 t

(Essay)
4.7/5
(35)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)