Exam 9: Vectors in Two and Three Dimensions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let z1=8(cos11π6+isin11π6)z _ { 1 } = 8 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right) and z2=23(cosπ3+isinπ3)z _ { 2 } = 2 \sqrt { 3 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find z1/z2z _ { 1 } / z _ { 2 }

(Multiple Choice)
4.7/5
(32)

Convert the equation to polar form. x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

(Short Answer)
4.8/5
(36)

Convert the equation to polar form. x2y2=4x ^ { 2 } - y ^ { 2 } = 4

(Multiple Choice)
4.9/5
(40)

Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

(Multiple Choice)
4.8/5
(32)

Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r> 0 , and the other with r<0r < 0

(Short Answer)
4.7/5
(47)

Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

(Short Answer)
4.8/5
(36)

Write z1=2+2iz _ { 1 } = 2 + 2 i in polar form then find 1/z11 / z _ { 1 }

(Multiple Choice)
4.9/5
(37)

Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=4t2,y=2+tx = 4 - t ^ { 2 } , y = 2 + t

(Short Answer)
4.8/5
(34)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (23,2)( - 2 \sqrt { 3 } , - 2 )

(Short Answer)
4.9/5
(28)

Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=t+3,y=tt+3x = t + 3 , y = \frac { t } { t + 3 }

(Multiple Choice)
5.0/5
(35)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (3,1)( - \sqrt { 3 } , - 1 )

(Short Answer)
5.0/5
(40)

Find the modulus and the argument for the complex number. z=iz = - i

(Multiple Choice)
4.7/5
(38)

Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=55i3z = - 5 - 5 i \sqrt { 3 }

(Short Answer)
5.0/5
(47)

Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=55i3z = 5 - 5 i \sqrt { 3 }

(Short Answer)
4.8/5
(41)

Sketch a graph of the polar equation. y=3+2sinθy = \sqrt { 3 } + 2 \sin \theta

(Essay)
4.7/5
(46)

Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=t+2,y=tt+2x = t + 2 , y = \frac { t } { t + 2 }

(Multiple Choice)
4.8/5
(38)

Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r > 0 , and both with 0θ<2π0 \leq \theta < 2 \pi

(Short Answer)
4.8/5
(37)

Graph the polar equation r=4sinθr= 4 \sin \theta

(Essay)
4.9/5
(34)

Use DeMoivre's Theorem to find the indicated power. (1+i)2(1+i)^{2}

(Short Answer)
4.8/5
(36)

Sketch a graph of the polar equation. r=3cosθr=\sqrt{3}-\cos \theta

(Multiple Choice)
4.9/5
(41)
Showing 21 - 40 of 115
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)