Exam 9: Vectors in Two and Three Dimensions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Which of the following is not a polar point representation for the point (3,π/3)( 3 , \pi / 3 ) ?

(Multiple Choice)
4.8/5
(38)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (3,1)( - \sqrt { 3 } , - 1 )

(Short Answer)
4.9/5
(38)

Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

(Essay)
4.9/5
(33)

Write the complex number in polar form. z=1iz = - 1 - i

(Essay)
4.8/5
(36)

Convert the point whose polar coordinates are (3,π/6)( \sqrt { 3 } , \pi / 6 ) to rectangular coordinates

(Multiple Choice)
4.9/5
(34)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta I  symmetric about the polar axis \text { symmetric about the polar axis } II  symmetric about the pole \text { symmetric about the pole } III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

(Multiple Choice)
4.8/5
(39)

Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=535iz = - 5 \sqrt { 3 } - 5 i

(Short Answer)
4.9/5
(42)

Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

(Multiple Choice)
4.9/5
(27)

Convert the polar equation to rectangular coordinates. r+cosθ=3r+ \cos \theta = 3

(Multiple Choice)
4.9/5
(24)

Convert the point whose polar coordinates are (8,5π/4)( 8,5 \pi / 4 ) to rectangular coordinates.

(Short Answer)
4.7/5
(33)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,2)( 0 , - \sqrt { 2 } )

(Multiple Choice)
4.7/5
(42)

Write z1=12jz _ { 1 } = 1 - \sqrt { 2 j } in polar form then find 1/z11 / z _ { 1 }

(Essay)
4.9/5
(36)

Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation. x=3cos2t,y=3sin2tx = 3 \cos ^ { 2 } t , y = 3 \sin ^ { 2 } t

(Essay)
4.9/5
(32)

Sketch a graph of the polar equation. r=3cos3θr = - 3 \cos 3 \theta

(Essay)
4.8/5
(37)

Graph the polar equation r=8cosθr = 8 \cos \theta

(Multiple Choice)
4.7/5
(31)

Graph the polar equation r=8sinθr = 8 \sin \theta

(Multiple Choice)
4.8/5
(34)

Convert the point whose polar coordinates are (1/2,3π/4)( 1 / \sqrt { 2 } , 3 \pi / 4 ) to rectangular coordinates

(Multiple Choice)
4.9/5
(35)

Find the modulus and the argument for the complex number. z=iz = - i

(Short Answer)
4.8/5
(31)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (23,2)( - 2 \sqrt { 3 } , - 2 )

(Multiple Choice)
4.7/5
(30)

Find the rectangular-coordinate equation for the parametric equations given. x=2cos2t,y=2sin2tx = 2 \cos ^ { 2 } t , y = 2 \sin ^ { 2 } t

(Multiple Choice)
4.8/5
(29)
Showing 41 - 60 of 115
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)