Exam 9: Vectors in Two and Three Dimensions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let z1=2(cos7π4+isin7π4)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { 7 \pi } { 4 } + i \sin \frac { 7 \pi } { 4 } \right) and z2=2(cos5π3+isin5π3)z _ { 2 } = 2 \left( \cos \frac { 5 \pi } { 3 } + i \sin \frac { 5 \pi } { 3 } \right) . Find z1/z2z _ { 1 } / z _ { 2 }

(Short Answer)
4.9/5
(47)

Find parametric equations for the line with the given properties.Passing through (12,8)( 12,8 ) and the origin

(Short Answer)
4.9/5
(35)

Find parametric equations for the line with the given properties.Passing through (12,8)( 12,8 ) and the origin

(Multiple Choice)
4.9/5
(30)

Sketch a graph of the polar equation. r=2sin3θr = - 2 \sin 3 \theta

(Essay)
4.9/5
(33)

Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

(Multiple Choice)
4.9/5
(44)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta I  symmetric about the polar axis \text { symmetric about the polar axis } II  symmetric about the pole \text { symmetric about the pole } III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

(Multiple Choice)
4.8/5
(32)

Solve the equation. x2i=0x ^ { 2 } - i = 0

(Multiple Choice)
4.8/5
(44)

Convert the polar equation to rectangular coordinates. y3=cscθ\frac { y } { 3 } = \csc \theta

(Multiple Choice)
4.9/5
(36)

Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

(Multiple Choice)
4.7/5
(38)

Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=t+2,y=tt+2x = t + 2 , y = \frac { t } { t + 2 }

(Multiple Choice)
4.9/5
(31)

Find parametric equations for the line with the given properties.Passing through (12,8)( 12,8 ) and the origin

(Multiple Choice)
4.8/5
(30)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,5)( 0 , - \sqrt { 5 } )

(Multiple Choice)
4.7/5
(39)

Find the cube roots of ii

(Short Answer)
4.7/5
(41)

Write z1=12jz _ { 1 } = 1 - \sqrt { 2 j } in polar form then find 1/z11 / z _ { 1 }

(Multiple Choice)
4.9/5
(38)

Convert the polar equation to rectangular coordinates. y3=cscθ\frac { y } { 3 } = \csc \theta

(Short Answer)
4.8/5
(30)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr^ { 2 } = \cos 2 \theta I  symmetric about the polar axis \text { symmetric about the polar axis } II  symmetric about the pole \text { symmetric about the pole } III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

(Multiple Choice)
4.8/5
(42)

Convert the polar equation to rectangular coordinates. r+cosθ=4r + \cos \theta = 4

(Short Answer)
4.9/5
(39)

Let z1=2(cosπ6+isinπ6)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=2(cosπ3+isinπ3)z _ { 2 } = \sqrt { 2 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

(Multiple Choice)
4.7/5
(35)

Graph the polar equation r=8cosθr = 8 \cos \theta

(Multiple Choice)
4.9/5
(34)

Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \piz=55i3z = 5 - 5 i \sqrt { 3 }

(Multiple Choice)
4.8/5
(39)
Showing 81 - 100 of 115
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)