Exam 7: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The area of a triangle with vertices (x1,y1),\left( x _ { 1 } , y _ { 1 } \right), (x2,y2),\left( x _ { 2 } , y _ { 2 } \right), and (x3,y3)\left( x _ { 3 } , y _ { 3 } \right) can be given as the absolute value of the determinant 12x1y11x2y21x3y31\frac { 1 } { 2 } \left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| Use this formula to find the area of each triangle whose coordinates are (6,2),( - 6,2 ), (0,3),( 0,3 ), and (5,6).( - 5,6 ).

(Multiple Choice)
4.9/5
(40)

Write the matrix in reduced row-echelon form. [75417322182353]\left[ \begin{array} { c c c c } 7 & - 5 & 4 & 1 \\- 7 & 3 & - 2 & 21 \\8 & 2 & 3 & - 53\end{array} \right]

(Multiple Choice)
4.9/5
(38)

Find the inverse of the matrix [888244032244840]\left[ \begin{array} { c c c } 8 & 8 & 8 \\24 & 40 & 32 \\24 & 48 & 40\end{array} \right] .

(Multiple Choice)
4.8/5
(42)

Given matrix A=[715145]A = \left[ \begin{array} { c c } 7 & 15 \\- 14 & 5\end{array} \right] . Find A1A ^ { - 1 } the inverse matrix.

(Multiple Choice)
4.7/5
(31)

Use a determinant to find the area of the triangle shown below. Use a determinant to find the area of the triangle shown below.

(Multiple Choice)
4.9/5
(45)

Find ABA B A=[8447]A = \left[ \begin{array} { l l } - 8 & 4 \\- 4 & 7\end{array} \right] B=[4244]B = \left[ \begin{array} { c c } - 4 & - 2 \\4 & - 4\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Find A+BA + B A=[178461]B=[973537]A = \left[ \begin{array} { c c } - 1 & 7 \\8 & - 4 \\6 & - 1\end{array} \right] \quad B = \left[ \begin{array} { c c } - 9 & 7 \\3 & 5 \\- 3 & - 7\end{array} \right]

(Multiple Choice)
4.9/5
(46)

Use a determinant to find y such that (6,15),(12,y), and (15,6)( 6 , - 15 ) , ( 12 , y ) , \text { and } ( 15 , - 6 ) are collinear.

(Multiple Choice)
4.7/5
(39)

Use the matrix capabilities of a graphing utility to find the inverse of the matrix 19[453483120]\frac { 1 } { 9 } \left[ \begin{array} { c c c } - 4 & - 5 & 3 \\- 4 & - 8 & 3 \\1 & 2 & 0\end{array} \right] (if it exists).

(Multiple Choice)
4.7/5
(34)

If possible, find 4A + 5B. A=[712761],B=[927287]A = \left[ \begin{array} { c c c } - 7 & 1 & - 2 \\- 7 & - 6 & 1\end{array} \right] , B = \left[ \begin{array} { c c c } 9 & 2 & 7 \\- 2 & 8 & - 7\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Evaluate the expression. 34[971]+[639]\frac { 3 } { 4 } \left[ \begin{array} { l l l } - 9 & 7 & - 1\end{array} \right] + \left[ \begin{array} { l l l } - 6 & 3 & - 9\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Write the augmented matrix for the system of linear equations. {x+9y+7z=9y+8z=5x+2z=4\left\{ \begin{aligned}x + 9 y + 7 z & = 9 \\- y + 8 z & = - 5 \\x + 2 z & = - 4\end{aligned} \right.

(Multiple Choice)
4.8/5
(34)

Given A=[55510501505]A = \left[ \begin{array} { c c c } - 5 & 5 & 5 \\10 & - 5 & 0 \\- 15 & 0 & - 5\end{array} \right] , use A1A ^ { - 1 } to decode the following cryptogram: -355 60 -35 -185 15 -25 60 -95 -40 60 -30 10 -145 70 45 -255 90 45 -5 25 45

(Multiple Choice)
4.8/5
(36)

Two competing companies offer cable television to a city with 100,000 households. Gold Cable Company has 10,000 subscribers and Galaxy Cable Company has 15,000 subscribers. The percent changes in cable subscriptions each year are shown in the matrix below [0.800.250.200.150.500.050.050.250.75]\left[ \begin{array} { l l l } 0.80 & 0.25 & 0.20 \\0.15 & 0.50 & 0.05 \\0.05 & 0.25 & 0.75\end{array} \right] where the columns are percent changes from Gold, from Galaxy, and from Nonsubscriber respectively and the rows are percent changes to Gold, to Galaxy, and to Nonsubscriber respectively. Find the number of nonsubscribers in two years using matrix multiplication.

(Multiple Choice)
4.9/5
(31)

Find A2. (Note: A2 = AA.) A=[4543]A = \left[ \begin{array} { c c } 4 & 5 \\- 4 & - 3\end{array} \right]

(Multiple Choice)
4.7/5
(29)

Solve the system of equations below by the Gaussian elimination method. 8x6y8z=288 x - 6 y - 8 z = 28 7x4y+7z=43- 7 x - 4 y + 7 z = - 43 3x+3y+3z=9- 3 x + 3 y + 3 z = - 9

(Multiple Choice)
5.0/5
(32)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. {x8y8z=36y+2z=7z=2\left\{ \begin{aligned}x - 8 y - 8 z & = - 36 \\y + 2 z & = 7 \\z & = 2\end{aligned} \right. {x7y+5z=7y+2z=7z=2\left\{ \begin{aligned}x - 7 y + 5 z & = - 7 \\y + 2 z & = 7 \\z & = 2\end{aligned} \right.

(Multiple Choice)
4.8/5
(37)

Find BAB A A=[926932025]B=[989507670]A = \left[ \begin{array} { c c c } - 9 & 2 & - 6 \\9 & 3 & - 2 \\0 & - 2 & 5\end{array} \right] \quad B = \left[ \begin{array} { c c c } 9 & - 8 & 9 \\5 & 0 & 7 \\- 6 & - 7 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(43)

An augmented matrix that represents a system of linear equations (in variables x, y, and z) has been reduced using Gauss-Jordan elimination. Write the solution represented by the augmented matrix. [100301060011]\left[ \begin{array} { c c c : c } 1 & 0 & 0 & - 3 \\0 & 1 & 0 & - 6 \\0 & 0 & 1 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Find the inverse of the matrix [3150]\left[ \begin{array} { c c } - 3 & - 1 \\- 5 & 0\end{array} \right] (if it exists).

(Multiple Choice)
4.9/5
(36)
Showing 21 - 40 of 94
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)